TY - JOUR
T1 - A Novel Magnetic Nanoparticle Drug Carrier for Enhanced Cancer Chemotherapy
AU - Chao, Xu
AU - Zhang, Zhuoli
AU - Guo, Lili
AU - Zhu, Jingjing
AU - Peng, Mingli
AU - Vermorken, Alphonsus J.M.
AU - van de Ven, Wim J.M.
AU - Chen, Chao
AU - Cui, Yali
PY - 2012/10/8
Y1 - 2012/10/8
N2 - Background: Magnetic nanoparticles (NPs) loaded with antitumor drugs in combination with an external magnetic field (EMF)-guided delivery can improve the efficacy of treatment and may decrease serious side effects. The purpose of this study was 1) to investigate application of PEG modified GMNPs (PGMNPs) as a drug carrier of the chemotherapy compound doxorubicin (DOX) in vitro; 2) to evaluate the therapeutic efficiency of DOX-conjugated PGMNPs (DOX-PGMNPs) using an EMF-guided delivery in vivo. Methods: First, DOX-PGMNPs were synthesized and the cytotoxicity of DOX-PGMNPs was assessed in vitro. Second, upon intravenous administration of DOX-PMGPNs to H22 hepatoma cell tumor-bearing mice, the DOX biodistribution in different organs (tissues) was measured. The antitumor activity was evaluated using different treatment strategies such as DOX-PMGPNs or DOX-PMGPNs with an EMF-guided delivery (DOX-PGMNPs-M). Results: The relative tumor volumes in DOX-PGMNPs-M, DOX-PGMNPs, and DOX groups were 5.46±1.48, 9.22±1.51, and 14.8±1.64, respectively (each p<0.05), following treatment for 33 days. The life span of tumor-bearing mice treated with DOX-PGMNPs-M, DOX-PGMNPs, and DOX were 74.8±9.95, 66.1±13.5, and 31.3±3.31 days, respectively (each p<0.05). Conclusion: This simple and adaptive nanoparticle design may accommodate chemotherapy for drug delivery optimization and in vivo drug-target definition in system biology profiling, increasing the margin of safety in treatment of cancers in the near future.
AB - Background: Magnetic nanoparticles (NPs) loaded with antitumor drugs in combination with an external magnetic field (EMF)-guided delivery can improve the efficacy of treatment and may decrease serious side effects. The purpose of this study was 1) to investigate application of PEG modified GMNPs (PGMNPs) as a drug carrier of the chemotherapy compound doxorubicin (DOX) in vitro; 2) to evaluate the therapeutic efficiency of DOX-conjugated PGMNPs (DOX-PGMNPs) using an EMF-guided delivery in vivo. Methods: First, DOX-PGMNPs were synthesized and the cytotoxicity of DOX-PGMNPs was assessed in vitro. Second, upon intravenous administration of DOX-PMGPNs to H22 hepatoma cell tumor-bearing mice, the DOX biodistribution in different organs (tissues) was measured. The antitumor activity was evaluated using different treatment strategies such as DOX-PMGPNs or DOX-PMGPNs with an EMF-guided delivery (DOX-PGMNPs-M). Results: The relative tumor volumes in DOX-PGMNPs-M, DOX-PGMNPs, and DOX groups were 5.46±1.48, 9.22±1.51, and 14.8±1.64, respectively (each p<0.05), following treatment for 33 days. The life span of tumor-bearing mice treated with DOX-PGMNPs-M, DOX-PGMNPs, and DOX were 74.8±9.95, 66.1±13.5, and 31.3±3.31 days, respectively (each p<0.05). Conclusion: This simple and adaptive nanoparticle design may accommodate chemotherapy for drug delivery optimization and in vivo drug-target definition in system biology profiling, increasing the margin of safety in treatment of cancers in the near future.
UR - http://www.scopus.com/inward/record.url?scp=84867302514&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84867302514&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0040388
DO - 10.1371/journal.pone.0040388
M3 - Article
C2 - 23056167
AN - SCOPUS:84867302514
SN - 1932-6203
VL - 7
JO - PloS one
JF - PloS one
IS - 10
M1 - e40388
ER -