TY - JOUR
T1 - A pathogenic human Orai1 mutation unmasks STIM1-independent rapid inactivation of Orai1 channels
AU - Yeung, Priscilla S.W.
AU - Yamashita, Megumi
AU - Prakriya, Murali
N1 - Funding Information:
We thank members of the laboratory and RS Lewis and CJ Lingle for helpful discussions. This work was supported by NIH grants R01 NS057499 and R01 NS115508 to MP. PS-WY was supported by NIH predoctoral fellowship F31NS101830.
Publisher Copyright:
© Yeung, Yamashita et al.
PY - 2023/2
Y1 - 2023/2
N2 - Ca2+ release-activated Ca2+ (CRAC) channels are activated by direct physical interactions between Orai1, the channel protein, and STIM1, the endoplasmic reticulum Ca2+ sensor. A hallmark of CRAC channels is fast Ca2+-dependent inactivation (CDI) which provides negative feedback to limit Ca2+ entry through CRAC channels. Although STIM1 is thought to be essential for CDI, its molecular mechanism remains largely unknown. Here, we examined a poorly understood gain-of-function (GOF) human Orai1 disease mutation, L138F, that causes tubular aggregate myopathy. Through pairwise mutational analysis, we determine that large amino acid substitutions at either L138 or the neighboring T92 locus located on the pore helix evoke highly Ca2+-selective currents in the absence of STIM1. We find that the GOF phenotype of the L138 pathogenic mutation arises due to steric clash between L138 and T92. Surprisingly, strongly activating L138 and T92 mutations showed CDI in the absence of STIM1, contradicting prevailing views that STIM1 is required for CDI. CDI of constitutively open T92W and L138F mutants showed enhanced intracellular Ca2+ sensitivity, which was normalized by re-adding STIM1 to the cells. Truncation of the Orai1 C-terminus reduced T92W CDI, indicating a key role for the Orai1 C-terminus for CDI. Overall, these results identify the molecular basis of a disease phenotype with broad implications for activation and inactivation of Orai1 channels.
AB - Ca2+ release-activated Ca2+ (CRAC) channels are activated by direct physical interactions between Orai1, the channel protein, and STIM1, the endoplasmic reticulum Ca2+ sensor. A hallmark of CRAC channels is fast Ca2+-dependent inactivation (CDI) which provides negative feedback to limit Ca2+ entry through CRAC channels. Although STIM1 is thought to be essential for CDI, its molecular mechanism remains largely unknown. Here, we examined a poorly understood gain-of-function (GOF) human Orai1 disease mutation, L138F, that causes tubular aggregate myopathy. Through pairwise mutational analysis, we determine that large amino acid substitutions at either L138 or the neighboring T92 locus located on the pore helix evoke highly Ca2+-selective currents in the absence of STIM1. We find that the GOF phenotype of the L138 pathogenic mutation arises due to steric clash between L138 and T92. Surprisingly, strongly activating L138 and T92 mutations showed CDI in the absence of STIM1, contradicting prevailing views that STIM1 is required for CDI. CDI of constitutively open T92W and L138F mutants showed enhanced intracellular Ca2+ sensitivity, which was normalized by re-adding STIM1 to the cells. Truncation of the Orai1 C-terminus reduced T92W CDI, indicating a key role for the Orai1 C-terminus for CDI. Overall, these results identify the molecular basis of a disease phenotype with broad implications for activation and inactivation of Orai1 channels.
UR - http://www.scopus.com/inward/record.url?scp=85149269096&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85149269096&partnerID=8YFLogxK
U2 - 10.7554/eLife.82281
DO - 10.7554/eLife.82281
M3 - Article
C2 - 36806330
AN - SCOPUS:85149269096
SN - 2050-084X
VL - 12
JO - eLife
JF - eLife
M1 - e82281
ER -