A physically inspired approach to coarse-graining transcriptomes reveals the dynamics of aging

Tao Li, Madhav Mani*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Single-cell RNA sequencing has enabled the study of aging at a molecular scale. While substantial progress has been made in measuring age-related gene expression, the underlying patterns and mechanisms of aging transcriptomes remain poorly understood. To address this gap, we propose a physics-inspired, data-analysis approach to extract additional insights from single-cell RNA sequencing data. By considering the genome as a many-body interacting system, we leverage central idea of the Renormalization Group to construct an approach to hierarchically describe aging across a spectrum of scales for the gene expresion. This framework provides a quantitative language to study the multiscale patterns of aging transcriptomes. Overall, our study demonstrates the value of leveraging theoretical physics concepts like the Renormalization Group to gain new biological insights from complex high-dimensional single-cell data.

Original languageEnglish (US)
Article numbere0301159
JournalPloS one
Volume19
Issue number10 October
DOIs
StatePublished - Oct 2024

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'A physically inspired approach to coarse-graining transcriptomes reveals the dynamics of aging'. Together they form a unique fingerprint.

Cite this