TY - JOUR
T1 - A Physics Based Approach for Neural Networks Enabled Design of All-Dielectric Metasurfaces
AU - Tanriover, Ibrahim
AU - Hadibrata, Wisnu
AU - Aydin, Koray
N1 - Publisher Copyright:
Copyright © 2020, The Authors. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/4/23
Y1 - 2020/4/23
N2 - Machine learning methods have found novel application areas in various disciplines as they offer low-computational cost solutions to complex problems. Recently, metasurface design has joined among these applications, and neural networks enabled significant improvements within a short period of time. However, there are still outstanding challenges that needs to be overcome. Here, we propose a data pre-processing approach based on the governing laws of the physical problem to eliminate dimensional mismatch between high dimensional optical response and low dimensional feature space of metasurfaces. We train forward and inverse models to predict optical responses of cylindrical meta-atoms and to retrieve their geometric parameters for a desired optical response, respectively. Our approach provides accurate prediction capability even outside the training spectral range. Finally, using our inverse model, we design and demonstrate a focusing metalens as a proof-of-concept application, thus validating the capability of our proposed approach. We believe our method will pave the way towards practical learning-based models to solve more complicated photonic design problems.
AB - Machine learning methods have found novel application areas in various disciplines as they offer low-computational cost solutions to complex problems. Recently, metasurface design has joined among these applications, and neural networks enabled significant improvements within a short period of time. However, there are still outstanding challenges that needs to be overcome. Here, we propose a data pre-processing approach based on the governing laws of the physical problem to eliminate dimensional mismatch between high dimensional optical response and low dimensional feature space of metasurfaces. We train forward and inverse models to predict optical responses of cylindrical meta-atoms and to retrieve their geometric parameters for a desired optical response, respectively. Our approach provides accurate prediction capability even outside the training spectral range. Finally, using our inverse model, we design and demonstrate a focusing metalens as a proof-of-concept application, thus validating the capability of our proposed approach. We believe our method will pave the way towards practical learning-based models to solve more complicated photonic design problems.
UR - http://www.scopus.com/inward/record.url?scp=85094987742&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85094987742&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85094987742
JO - Free Radical Biology and Medicine
JF - Free Radical Biology and Medicine
SN - 0891-5849
ER -