A piggybac-based recessive screening method to identify pluripotency regulators

Ge Guo, Yue Huang, Peter Humphreys, Xiaozhong Wang, Austin Smith*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

Phenotype driven genetic screens allow unbiased exploration of the genome to discover new biological regulators. Bloom syndrome gene (Blm) deficient embryonic stem (ES) cells provide an opportunity for recessive screening due to frequent loss of heterozygosity. We describe a strategy for isolating regulators of mammalian pluripotency based on conversion to homozygosity of PiggyBac gene trap insertions combined with stringent selection for differentiation resistance. From a screen of 2000 mutants we obtained a disruptive integration in the Tcf3 gene. Homozygous Tcf3 mutants showed impaired differentiation and enhanced self-renewal. This phenotype was reverted in a dosage sensitive manner by excision of one or both copies of the gene trap. These results provide new evidence confirming that Tcf3 is a potent negative regulator of pluripotency and validate a forward screening methodology to identify modulators of pluripotent stem cell biology.

Original languageEnglish (US)
Article numbere18189
JournalPloS one
Volume6
Issue number4
DOIs
StatePublished - 2011

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'A piggybac-based recessive screening method to identify pluripotency regulators'. Together they form a unique fingerprint.

Cite this