Abstract
In this study, the structural elements in the putative movement protein (MP) of the GAV strain of Barley yellow dwarf virus (BYDV-GAV) were investigated. The GFP fusion protein of BYDV-GAV MP was found to be associated with the nuclear envelope (NE) in transgenic Arabidopsis thaliana (L.) cells. Serial deletion mapping demonstrated that the predicted α-helical domain located at the N-terminus of BYDV-GAV MP was required and sufficient for NE targeting in onion epidermal cells. This α-helical domain does not contain any sequence elements similar to known nuclear localisation signals or bear any significant resemblance to previously characterised NE-targeting structure, indicating that it may represent a novel NE-targeting domain in plant cells. Deletion mutagenesis showed that the C-terminal end of BYDV-GAV MP possessed an element required for its RNA binding activity in vitro. Further analysis revealed that the arginine amino acids within the last 11 residues of the C-terminal end were crucial for the binding of BYDV-GAV MP to RNA. This C-terminal element enriched in basic residues was also present in the MPs of other BYDV strains and the polerovirus Potato leaf roll virus (PLRV), suggesting the conservation of a RNA binding element in the MPs from both luteoviruses and poleroviruses. The data in this work present an initial characterisation of a novel plant NE-targeting domain and a RNA binding element on BYDV-GAV MP. Further studies are underway to investigate the function of these elements in the biology of natural BYDV-GAV infection.
Original language | English (US) |
---|---|
Pages (from-to) | 40-50 |
Number of pages | 11 |
Journal | Functional Plant Biology |
Volume | 35 |
Issue number | 1 |
DOIs | |
State | Published - 2008 |
Keywords
- Arabidopsis thaliana
- Luteovirus
ASJC Scopus subject areas
- Agronomy and Crop Science
- Plant Science