A probabilistic graphical model for brand reputation assessment in social networks

Kunpeng Zhang, Douglas C Downey, Zhengzhang Chen, Yu Cheng, Yusheng Xie, Ankit Agrawal, Wei-Keng Liao, Alok Nidhi Choudhary

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

Social media has become a popular platform that connects people who share information, in particular personal opinions. Through such a fast information exchange mechanism, reputation of individuals, consumer products, or business companies can be quickly built up within a social network. Recently, applications mining social network data start emerging to find the communities sharing the same interests for marketing purposes. Knowing the reputation of social network entities, such as celebrities or business companies, can help develop better strategies for election campaigns or new product advertisements. In this paper, we propose a probabilistic graphical model to collectively measure reputations of entities in social networks. By collecting and analyzing large amount of user activities on Facebook, our model can effectively and efficiently rank entities, such as presidential candidates, professional sport teams, musician bands, and companies, based on their social reputation. The proposed model produces results largely consistent with the two publicly available systems - movie ranking in Internet Movie Database and business school ranking by the US news & World Report - with the correlation coefficients of 0.75 and -0.71, respectively.

Original languageEnglish (US)
Title of host publicationProceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
PublisherAssociation for Computing Machinery
Pages223-230
Number of pages8
ISBN (Print)9781450322409
DOIs
StatePublished - 2013
Event2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013 - Niagara Falls, ON, Canada
Duration: Aug 25 2013Aug 28 2013

Publication series

NameProceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013

Other

Other2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
Country/TerritoryCanada
CityNiagara Falls, ON
Period8/25/138/28/13

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems

Fingerprint

Dive into the research topics of 'A probabilistic graphical model for brand reputation assessment in social networks'. Together they form a unique fingerprint.

Cite this