A progressively-trained scale-invariant and boundary-aware deep neural network for the automatic 3D segmentation of lung lesions

Bo Zhou, Randolph Crawford, Belma Dogdas, Gregory Goldmacher, Antong Chen*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

Volumetric segmentation of lesions on CT scans is important for many types of analysis, including lesion growth kinetic modeling in clinical trials and machine learning of radiomic features. Manual segmentation is laborious, and impractical for large-scale use. For routine clinical use, and in clinical trials that apply the Response Evaluation Criteria In Solid Tumors (RECIST), clinicians typically outline the boundaries of a lesion on a single slice to extract diameter measurements. In this work, we have collected a large-scale database, named LesionVis, with pixel-wise manual 2D lesion delineations on the RECIST-slices. To extend the 2D segmentations to 3D, we propose a volumetric progressive lesion segmentation (PLS) algorithm to automatically segment the 3D lesion volume from 2D delineations using a scale-invariant and boundary-aware deep convolutional network (SIBA-Net). The SIBA-Net copes with the size transition of a lesion when the PLS progresses from the RECIST-slice to the edge-slices, as well as when performing longitudinal assessment of lesions whose size change over multiple time points. The proposed PLS-SiBA-Net (P-SiBA) approach is assessed on the lung lesion cases from LesionVis. Our experimental results demonstrate that the P-SiBA approach achieves mean Dice similarity coefficients (DSC) of 0.81, which significantly improves 3D segmentation accuracy compared with the approaches proposed previously (highest mean DSC at 0.78 on LesionVis). In summary, by leveraging the limited 2D delineations on the RECIST-slices, P-SiBA is an effective semi-supervised approach to produce accurate lesion segmentations in 3D.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-10
Number of pages10
ISBN (Electronic)9781728119755
DOIs
StatePublished - Mar 4 2019
Event19th IEEE Winter Conference on Applications of Computer Vision, WACV 2019 - Waikoloa Village, United States
Duration: Jan 7 2019Jan 11 2019

Publication series

NameProceedings - 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019

Conference

Conference19th IEEE Winter Conference on Applications of Computer Vision, WACV 2019
Country/TerritoryUnited States
CityWaikoloa Village
Period1/7/191/11/19

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'A progressively-trained scale-invariant and boundary-aware deep neural network for the automatic 3D segmentation of lung lesions'. Together they form a unique fingerprint.

Cite this