Abstract
Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression. Using the CM PCHi-C map, we linked 1999 CVD-associated SNPs to 347 target genes. Remarkably, more than 90% of SNP-target gene interactions did not involve the nearest gene, while 40% of SNPs interacted with at least two genes, demonstrating the importance of considering long-range chromatin interactions when interpreting functional targets of disease loci.
Original language | English (US) |
---|---|
Article number | e35788 |
Journal | eLife |
Volume | 7 |
DOIs | |
State | Published - Jul 10 2018 |
Funding
We kindly thank the laboratory of Yoav Gilad for providing the iPSC line and assisting with the cardi-omyocyte differentiation protocol, and Dr. Kohta Ikegami for assistance with the ChIP-seq protocol. This work was supported by NIH grants HL123857 (MAN), HL119967 (MAN), HL118758 (MAN), HL128075 (MAN and EMM), T32GMOO7197 (LEM), American Heart Association Pre-doctoral award 17PRE33410726 (LEM), HL137307 (LEM).
ASJC Scopus subject areas
- General Immunology and Microbiology
- General Biochemistry, Genetics and Molecular Biology
- General Neuroscience