A prototype system that learns by reading simplified texts

Kenneth D Forbus*, Christopher K Riesbeck, Lawrence A Birnbaum, Kevin Livingston, Abhishek Sharma, Leo Ureel

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations


Systems that could learn by reading would radically change the economics of building large knowledge bases. This paper describes Learning Reader, a prototype system that extends its knowledge base by reading. Learning Reader consists of three components. The Reader, which converts text into formally represented cases, uses a Direct Memory Access Parser operating over a large knowledge base, derived from ResearchCyc. The Q/A system, which provides a means of quizzing the system on what it has learned, uses focused sets of axioms automatically extracted from the knowledge base for tractability. The Ruminator, which attempts to improve the system's understanding of what it has read by off-line processing, generates questions for itself by several means, including analogies with prior material and automatically constructed generalizations from examples in the KB and its prior reading. We discuss the architecture of the system, how each component works, and some experimental results.

Original languageEnglish (US)
Title of host publicationMachine Reading - Papers from the 2007 AAAI Spring Symposium, Technical Report
Number of pages6
StatePublished - 2007
Event2007 AAAI Spring Symposium - Stanford, CA, United States
Duration: Mar 26 2007Mar 28 2007

Publication series

NameAAAI Spring Symposium - Technical Report


Other2007 AAAI Spring Symposium
Country/TerritoryUnited States
CityStanford, CA

ASJC Scopus subject areas

  • General Engineering


Dive into the research topics of 'A prototype system that learns by reading simplified texts'. Together they form a unique fingerprint.

Cite this