TY - GEN
T1 - A quantitative solution for the full shear-thinning EHL point contact problem including traction
AU - Liu, Yuchuan
AU - Bair, Scott
AU - Wang, Q. Jane
AU - Vergne, Philippe
PY - 2008
Y1 - 2008
N2 - We present a realistic elastohydrodynamic lubrication (EHL) simulation in point contact using a Carreau-like model for the shear-thinning response and the Doolittle-Tait free-volume viscosity model for the piezoviscous response. The liquid is a high viscosity polyalphaolefin which possesses a relatively low threshold for shear-thinning. As a result, the measured EHL film thickness is about one-half of the Newtonian prediction. We derived and numerically solved the two-dimensional generalized Reynolds equation for the modified Carreau model based on Greenwood [1]. Departing from many previous solutions, the viscosity models used for the pressure and shear dependence were obtained entirely from viscometer measurements. Truly remarkable agreement is found in the comparisons of simulation and experiment for traction coefficient and for film thickness in both pure rolling and sliding cases. This agreement validates the use of a generalized Newtonian model in EHL.
AB - We present a realistic elastohydrodynamic lubrication (EHL) simulation in point contact using a Carreau-like model for the shear-thinning response and the Doolittle-Tait free-volume viscosity model for the piezoviscous response. The liquid is a high viscosity polyalphaolefin which possesses a relatively low threshold for shear-thinning. As a result, the measured EHL film thickness is about one-half of the Newtonian prediction. We derived and numerically solved the two-dimensional generalized Reynolds equation for the modified Carreau model based on Greenwood [1]. Departing from many previous solutions, the viscosity models used for the pressure and shear dependence were obtained entirely from viscometer measurements. Truly remarkable agreement is found in the comparisons of simulation and experiment for traction coefficient and for film thickness in both pure rolling and sliding cases. This agreement validates the use of a generalized Newtonian model in EHL.
UR - http://www.scopus.com/inward/record.url?scp=43449107096&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=43449107096&partnerID=8YFLogxK
U2 - 10.1115/IJTC2007-44100
DO - 10.1115/IJTC2007-44100
M3 - Conference contribution
AN - SCOPUS:43449107096
SN - 0791848108
SN - 9780791848104
T3 - 2007 Proceedings of the ASME/STLE International Joint Tribology Conference, IJTC 2007
SP - 1031
EP - 1032
BT - 2007 Proceedings of the ASME/STLE International Joint Tribology Conference, IJTC 2007
T2 - 2007 ASME/STLE International Joint Tribology Conference, IJTC 2007
Y2 - 22 October 2007 through 24 October 2007
ER -