TY - JOUR
T1 - A quasiclassical trajectory study of H+H2O→OH+H2
T2 - Angular distributions and OH angular momentum alignment
AU - Bradley, Kimberly S.
AU - Schatz, George C.
PY - 1998/5/15
Y1 - 1998/5/15
N2 - We present a detailed theoretical study of the H+H2O reaction dynamics using quasiclassical trajectories and two potential energy surfaces, one from Walch-Dunning-Schatz-Elgersma (WDSE) and one from Isaacson (I5). Collision energies of 1.0, 1.4, and 2.2 eV are considered, and both scalar and vector properties of the product distributions are presented. The vector properties include polarization-dependent differential cross sections (PDDCS) and angular momentum alignment parameters for both OH and H2. The WDSE and I5 scalar and vector results are in most respects very similar. However, we find that they differ noticeably with respect to angular momentum alignment, with I5 predicting weak OH alignment, while WDSE shows much stronger alignment with the OH angular momentum vector preferentially perpendicular to the scattering plane. The I5 surface is a more recent and more accurate surface for H3O, so it is extremely encouraging that the alignment predicted by I5 is in quantitative agreement with a recent measurement from Brouard and co-workers. In addition, the I5 differential cross section matches the Brouard results quantitatively, while WDSE does not. Detailed mechanistic information underlying the angular distributions, alignment, and PDDCS results is presented, and we find that the differences between I5 and WDSE alignments are connected to different energy release characteristics of the surface in the corner cutting region.
AB - We present a detailed theoretical study of the H+H2O reaction dynamics using quasiclassical trajectories and two potential energy surfaces, one from Walch-Dunning-Schatz-Elgersma (WDSE) and one from Isaacson (I5). Collision energies of 1.0, 1.4, and 2.2 eV are considered, and both scalar and vector properties of the product distributions are presented. The vector properties include polarization-dependent differential cross sections (PDDCS) and angular momentum alignment parameters for both OH and H2. The WDSE and I5 scalar and vector results are in most respects very similar. However, we find that they differ noticeably with respect to angular momentum alignment, with I5 predicting weak OH alignment, while WDSE shows much stronger alignment with the OH angular momentum vector preferentially perpendicular to the scattering plane. The I5 surface is a more recent and more accurate surface for H3O, so it is extremely encouraging that the alignment predicted by I5 is in quantitative agreement with a recent measurement from Brouard and co-workers. In addition, the I5 differential cross section matches the Brouard results quantitatively, while WDSE does not. Detailed mechanistic information underlying the angular distributions, alignment, and PDDCS results is presented, and we find that the differences between I5 and WDSE alignments are connected to different energy release characteristics of the surface in the corner cutting region.
UR - http://www.scopus.com/inward/record.url?scp=0000675791&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000675791&partnerID=8YFLogxK
U2 - 10.1063/1.476234
DO - 10.1063/1.476234
M3 - Article
AN - SCOPUS:0000675791
SN - 0021-9606
VL - 108
SP - 7994
EP - 8003
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 19
ER -