TY - JOUR
T1 - A quasiclassical trajectory study of the Cl + HCN → HCl + CN reaction dynamics. Microscopic reaction mechanism of the H(Cl) + HCN → H2(HCl) + CN reactions
AU - Troya, Diego
AU - González, Miguel
AU - Wu, Guosheng
AU - Schatz, George C
PY - 2001/3/22
Y1 - 2001/3/22
N2 - The Cl + HCN → HCl + CN reaction dynamics has been studied using the quasiclassical trajectory method. The potential energy surface is taken from an accurate global surface for the HHCN system. Cl + HCN and H + HCN have very similar energetics, so the present calculation provides a test of whether the Cl + HCN dynamics is captured by a model in which the only difference is provided by the mass of the attacking atom. We find generally good agreement with experimental studies of the Cl + HCN reaction, including CN product rovibrational distributions and the relative rate coefficients for HCN initially in highly excited vibrational states. The results correctly describe the differences between Cl and H attack, so apparently the differences in the reactivity of these two reactions are a kinematic effect. A detailed analysis of the microscopic reaction mechanism of the H + HCN → H2 + CN and Cl + HCN → HCl + CN reactions is also provided. This shows that the H and Cl reactions are both dominated by direct dynamics; however, the direct reaction with Cl frequently involves secondary collisions in which the Cl interacts with the CN fragment of HCN before abstracting the H atom, while the H atom reaction rarely does this. This allows the CN stretch mode to interact more strongly with reaction coordinate motions in Cl + HCN than in H + HCN, leading to greater CN vibrational excitation for initial HCN states that have no C-N stretch excitation, in agreement with observations.
AB - The Cl + HCN → HCl + CN reaction dynamics has been studied using the quasiclassical trajectory method. The potential energy surface is taken from an accurate global surface for the HHCN system. Cl + HCN and H + HCN have very similar energetics, so the present calculation provides a test of whether the Cl + HCN dynamics is captured by a model in which the only difference is provided by the mass of the attacking atom. We find generally good agreement with experimental studies of the Cl + HCN reaction, including CN product rovibrational distributions and the relative rate coefficients for HCN initially in highly excited vibrational states. The results correctly describe the differences between Cl and H attack, so apparently the differences in the reactivity of these two reactions are a kinematic effect. A detailed analysis of the microscopic reaction mechanism of the H + HCN → H2 + CN and Cl + HCN → HCl + CN reactions is also provided. This shows that the H and Cl reactions are both dominated by direct dynamics; however, the direct reaction with Cl frequently involves secondary collisions in which the Cl interacts with the CN fragment of HCN before abstracting the H atom, while the H atom reaction rarely does this. This allows the CN stretch mode to interact more strongly with reaction coordinate motions in Cl + HCN than in H + HCN, leading to greater CN vibrational excitation for initial HCN states that have no C-N stretch excitation, in agreement with observations.
UR - http://www.scopus.com/inward/record.url?scp=0035932665&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035932665&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0035932665
SN - 1089-5639
VL - 105
SP - 2285
EP - 2297
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 11
ER -