A reciprocal-space formulation of mixed quantum-classical dynamics

Alex Krotz, Justin Provazza, Roel Tempelaar*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We derive a formulation of mixed quantum-classical dynamics for modeling electronic carriers interacting with phonons in reciprocal space. For dispersionless phonons, we start by expressing the real-space classical coordinates in terms of complex variables. Taking these variables as a Fourier series then yields the reciprocal-space coordinates. Evaluating the electron-phonon interaction term through Ehrenfest's theorem, we arrive at a reciprocal-space formalism that is equivalent to mean-field mixed quantum-classical dynamics in real space. This equivalence is numerically verified for the Holstein and Peierls models, for which we find the reciprocal-space Hellmann-Feynman forces to involve momentum-derivative contributions in addition to the position-derivative terms commonly seen in real space. To illustrate the advantage of the reciprocal-space formulation, we present a proof of concept for the inexpensive modeling of low-momentum carriers interacting with phonons using a truncated reciprocal-space basis, which is not possible within a real-space formulation.

Original languageEnglish (US)
Article number224101
JournalJournal of Chemical Physics
Volume154
Issue number22
DOIs
StatePublished - Jun 14 2021

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'A reciprocal-space formulation of mixed quantum-classical dynamics'. Together they form a unique fingerprint.

Cite this