A reversible light-operated nanovalve on mesoporous silica nanoparticles

Derrick Tarn, Daniel P. Ferris, Jonathan C. Barnes, Michael W. Ambrogio, J. Fraser Stoddart, Jeffrey I. Zink*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

122 Scopus citations

Abstract

Two azobenzene α-cyclodextrin based nanovalves are designed, synthesized and assembled on mesoporous silica nanoparticles. Under aqueous conditions, the cyclodextrin cap is tightly bound to the azobenzene moiety and capable of holding back loaded cargo molecules. Upon irradiation with a near-UV light laser, trans to cis-photoisomerization of azobenzene initiates a dethreading process, which causes the cyclodextrin cap to unbind followed by the release of cargo. The addition of a bulky stopper to the end of the stalk allows this design to be reversible; complete dethreading of cyclodextrin as a result of unbinding with azobenzene is prevented as a consequence of steric interference. As a result, thermal relaxation of cis- to trans-azobenzene allows for the rebinding of cyclodextrin and resealing of the nanopores, a process which entraps the remaining cargo. Two stalks were designed with different lengths and tested with alizarin red S and propidium iodide. No cargo release was observed prior to light irradiation, and the system was capable of multiuse. On/off control was also demonstrated by monitoring the release of cargo when the light stimulus was applied and removed, respectively.

Original languageEnglish (US)
Pages (from-to)3335-3343
Number of pages9
JournalNanoscale
Volume6
Issue number6
DOIs
StatePublished - Mar 21 2014

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'A reversible light-operated nanovalve on mesoporous silica nanoparticles'. Together they form a unique fingerprint.

Cite this