TY - JOUR
T1 - A SARS-CoV-2 surveillance system in sub-saharan Africa
T2 - Modeling study for persistence and transmission to inform policy
AU - Post, Lori Ann
AU - Argaw, Salem T.
AU - Jones, Cameron
AU - Moss, Charles B.
AU - Resnick, Danielle
AU - Singh, Lauren Nadya
AU - Murphy, Robert Leo
AU - Achenbach, Chad J.
AU - White, Janine
AU - Issa, Tariq Ziad
AU - Boctor, Michael J.
AU - Oehmke, James Francis
N1 - Funding Information:
This publication was made possible through support provided by Feed the Future through the US Agency for International Development, under the terms of Contract No 7200LA1800003. The opinions expressed herein are those of the authors and do not necessarily reflect the views of the US Agency for International Development.
Publisher Copyright:
© Lori Ann Post, Salem T Argaw, Cameron Jones, Charles B Moss, Danielle Resnick, Lauren Nadya Singh, Robert Leo Murphy, Chad J Achenbach, Janine White, Tariq Ziad Issa, Michael J Boctor, James Francis Oehmke. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 19.11.2020. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.
PY - 2020/11
Y1 - 2020/11
N2 - Background: Since the novel coronavirus emerged in late 2019, the scientific and public health community around the world have sought to better understand, surveil, treat, and prevent the disease, COVID-19. In sub-Saharan Africa (SSA), many countries responded aggressively and decisively with lockdown measures and border closures. Such actions may have helped prevent large outbreaks throughout much of the region, though there is substantial variation in caseloads and mortality between nations. Additionally, the health system infrastructure remains a concern throughout much of SSA, and the lockdown measures threaten to increase poverty and food insecurity for the subcontinent's poorest residents. The lack of sufficient testing, asymptomatic infections, and poor reporting practices in many countries limit our understanding of the virus's impact, creating a need for better and more accurate surveillance metrics that account for underreporting and data contamination. Objective: The goal of this study is to improve infectious disease surveillance by complementing standardized metrics with new and decomposable surveillance metrics of COVID-19 that overcome data limitations and contamination inherent in public health surveillance systems. In addition to prevalence of observed daily and cumulative testing, testing positivity rates, morbidity, and mortality, we derived COVID-19 transmission in terms of speed, acceleration or deceleration, change in acceleration or deceleration (jerk), and 7-day transmission rate persistence, which explains where and how rapidly COVID-19 is transmitting and quantifies shifts in the rate of acceleration or deceleration to inform policies to mitigate and prevent COVID-19 and food insecurity in SSA. Methods: We extracted 60 days of COVID-19 data from public health registries and employed an empirical difference equation to measure daily case numbers in 47 sub-Saharan countries as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. Results: Kenya, Ghana, Nigeria, Ethiopia, and South Africa have the most observed cases of COVID-19, and the Seychelles, Eritrea, Mauritius, Comoros, and Burundi have the fewest. In contrast, the speed, acceleration, jerk, and 7-day persistence indicate rates of COVID-19 transmissions differ from observed cases. In September 2020, Cape Verde, Namibia, Eswatini, and South Africa had the highest speed of COVID-19 transmissions at 13.1, 7.1, 3.6, and 3 infections per 100,0000, respectively; Zimbabwe had an acceleration rate of transmission, while Zambia had the largest rate of deceleration this week compared to last week, referred to as a jerk. Finally, the 7-day persistence rate indicates the number of cases on September 15, 2020, which are a function of new infections from September 8, 2020, decreased in South Africa from 216.7 to 173.2 and Ethiopia from 136.7 to 106.3 per 100,000. The statistical approach was validated based on the regression results; they determined recent changes in the pattern of infection, and during the weeks of September 1-8 and September 9-15, there were substantial country differences in the evolution of the SSA pandemic. This change represents a decrease in the transmission model R value for that week and is consistent with a de-escalation in the pandemic for the sub-Saharan African continent in general. Conclusions: Standard surveillance metrics such as daily observed new COVID-19 cases or deaths are necessary but insufficient to mitigate and prevent COVID-19 transmission. Public health leaders also need to know where COVID-19 transmission rates are accelerating or decelerating, whether those rates increase or decrease over short time frames because the pandemic can quickly escalate, and how many cases today are a function of new infections 7 days ago. Even though SSA is home to some of the poorest countries in the world, development and population size are not necessarily predictive of COVID-19 transmission, meaning higher income countries like the United States can learn from African countries on how best to implement mitigation and prevention efforts.
AB - Background: Since the novel coronavirus emerged in late 2019, the scientific and public health community around the world have sought to better understand, surveil, treat, and prevent the disease, COVID-19. In sub-Saharan Africa (SSA), many countries responded aggressively and decisively with lockdown measures and border closures. Such actions may have helped prevent large outbreaks throughout much of the region, though there is substantial variation in caseloads and mortality between nations. Additionally, the health system infrastructure remains a concern throughout much of SSA, and the lockdown measures threaten to increase poverty and food insecurity for the subcontinent's poorest residents. The lack of sufficient testing, asymptomatic infections, and poor reporting practices in many countries limit our understanding of the virus's impact, creating a need for better and more accurate surveillance metrics that account for underreporting and data contamination. Objective: The goal of this study is to improve infectious disease surveillance by complementing standardized metrics with new and decomposable surveillance metrics of COVID-19 that overcome data limitations and contamination inherent in public health surveillance systems. In addition to prevalence of observed daily and cumulative testing, testing positivity rates, morbidity, and mortality, we derived COVID-19 transmission in terms of speed, acceleration or deceleration, change in acceleration or deceleration (jerk), and 7-day transmission rate persistence, which explains where and how rapidly COVID-19 is transmitting and quantifies shifts in the rate of acceleration or deceleration to inform policies to mitigate and prevent COVID-19 and food insecurity in SSA. Methods: We extracted 60 days of COVID-19 data from public health registries and employed an empirical difference equation to measure daily case numbers in 47 sub-Saharan countries as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. Results: Kenya, Ghana, Nigeria, Ethiopia, and South Africa have the most observed cases of COVID-19, and the Seychelles, Eritrea, Mauritius, Comoros, and Burundi have the fewest. In contrast, the speed, acceleration, jerk, and 7-day persistence indicate rates of COVID-19 transmissions differ from observed cases. In September 2020, Cape Verde, Namibia, Eswatini, and South Africa had the highest speed of COVID-19 transmissions at 13.1, 7.1, 3.6, and 3 infections per 100,0000, respectively; Zimbabwe had an acceleration rate of transmission, while Zambia had the largest rate of deceleration this week compared to last week, referred to as a jerk. Finally, the 7-day persistence rate indicates the number of cases on September 15, 2020, which are a function of new infections from September 8, 2020, decreased in South Africa from 216.7 to 173.2 and Ethiopia from 136.7 to 106.3 per 100,000. The statistical approach was validated based on the regression results; they determined recent changes in the pattern of infection, and during the weeks of September 1-8 and September 9-15, there were substantial country differences in the evolution of the SSA pandemic. This change represents a decrease in the transmission model R value for that week and is consistent with a de-escalation in the pandemic for the sub-Saharan African continent in general. Conclusions: Standard surveillance metrics such as daily observed new COVID-19 cases or deaths are necessary but insufficient to mitigate and prevent COVID-19 transmission. Public health leaders also need to know where COVID-19 transmission rates are accelerating or decelerating, whether those rates increase or decrease over short time frames because the pandemic can quickly escalate, and how many cases today are a function of new infections 7 days ago. Even though SSA is home to some of the poorest countries in the world, development and population size are not necessarily predictive of COVID-19 transmission, meaning higher income countries like the United States can learn from African countries on how best to implement mitigation and prevention efforts.
KW - African COVID-19 surveillance system
KW - African COVID-19 transmission acceleration
KW - African COVID-19 transmission speed
KW - African SARS-CoV-2
KW - African econometrics
KW - African public health surveillance
KW - African surveillance metrics
KW - Angola
KW - Benin
KW - Botswana
KW - Burkina Faso
KW - Burundi
KW - COVID-19 7-day persistence
KW - COVID-19 transmission deceleration
KW - COVID-19 transmission jerk
KW - Cameroon
KW - Central African Republic
KW - Chad
KW - Comoros
KW - Congo
KW - Cote D'Ivoire
KW - Democratic Republic of Congo
KW - Dynamic panel data
KW - Equatorial Guinea
KW - Eritrea
KW - Ethiopia
KW - Gabon
KW - Gambia
KW - Generalized method of the moments
KW - Ghana
KW - Global COVID-19 surveillance
KW - Guinea
KW - Guinea-Bissau
KW - Kenya
KW - Lesotho
KW - Liberia
KW - Madagascar
KW - Malawi
KW - Mali
KW - Mauritania
KW - Mauritius
KW - Mozambique
KW - Namibia
KW - Niger
KW - Nigeria
KW - Rwanda
KW - Sao Tome and Principe
KW - Senegal
KW - Seychelles
KW - Sierra Leone
KW - Somalia
KW - South Africa
KW - South Sudan
KW - Sub-Saharan African COVID-19
KW - Sudan
KW - Suriname
KW - Swaziland
KW - Tanzania
KW - Togo
KW - Uganda
KW - Zambia
KW - Zimbabwe
UR - http://www.scopus.com/inward/record.url?scp=85096508633&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096508633&partnerID=8YFLogxK
U2 - 10.2196/24248
DO - 10.2196/24248
M3 - Article
C2 - 33211026
AN - SCOPUS:85096508633
SN - 1439-4456
VL - 22
JO - Journal of medical Internet research
JF - Journal of medical Internet research
IS - 11
M1 - e24248
ER -