A scalable and distributed approach for self-assembly and self-healing of a differentiated shape

Michael Rubenstein*, Wei Min Shen

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

As the ability to produce a large number of small, simple robotic agents improves, it becomes essential to control the behavior of these robots in such a way that the sum of their actions gives rise to the desired overall result. These robots are modeled as homogeneous, distributed robots, with only one simple short range sensor. Our simple robots are tasked to form and hold a desired swarm shape, independent of the total number of agents. If this shape is damaged by the removal of some of the robots, the remaining agents will recover the former shape, but on a smaller scale. These shapes can also have a pattern such as a picture or drawing displayed on them by controlling the individual robots color, symbolically representing the differentiation of agents within the swarm. This pattern will resize to fit the existing swarm. With the ability to synchronize in time, the swarm gains the ability to change the pattern displayed, resulting in a moving image.

Original languageEnglish (US)
Title of host publication2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
Pages1397-1402
Number of pages6
DOIs
StatePublished - Dec 1 2008
Event2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS - Nice, France
Duration: Sep 22 2008Sep 26 2008

Publication series

Name2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS

Other

Other2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
Country/TerritoryFrance
CityNice
Period9/22/089/26/08

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A scalable and distributed approach for self-assembly and self-healing of a differentiated shape'. Together they form a unique fingerprint.

Cite this