A simplified model for heterotopic heart valve transplantation in rodents

Morgan A. Hill, Jennie H. Kwon, Brielle Gerry, Minoo Kavarana, Satish N. Nadig*, Taufiek K. Rajab

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


There is an urgent clinical need for heart valve replacements that can grow in children. Heart valve transplantation is proposed as a new type of transplant with the potential to deliver durable heart valves capable of somatic growth with no requirement for anticoagulation. However, the immunobiology of heart valve transplants remains unexplored, highlighting the need for animal models to study this new type of transplant. Previous rat models for heterotopic aortic valve transplantation into the abdominal aorta have been described, though they are technically challenging and costly. For addressing this challenge, a renal subcapsular transplant model was developed in rodents as a practical and more straightforward method for studying heart valve transplant immunobiology. In this model, a single aortic valve leaflet is harvested and inserted into the renal subcapsular space. The kidney is easily accessible, and the transplanted tissue is securely contained in a subcapsular space that is well vascularized and can accommodate a variety of tissue sizes. Furthermore, because a single rat can provide three donor aortic leaflets and a single kidney can provide multiple sites for transplanted tissue, fewer rats are required for a given study. Here, the transplantation technique is described, providing a significant step forward in studying the transplant immunology of heart valve transplantation.

Original languageEnglish (US)
Article numbere62948
JournalJournal of Visualized Experiments
Issue number175
StatePublished - Sep 2021
Externally publishedYes

ASJC Scopus subject areas

  • Neuroscience(all)
  • Chemical Engineering(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)


Dive into the research topics of 'A simplified model for heterotopic heart valve transplantation in rodents'. Together they form a unique fingerprint.

Cite this