TY - GEN
T1 - A spectral density function approach for design of organic photovoltaic cells
AU - Ghumman, Umar Farooq
AU - Munshi, Joydeep
AU - Iyer, Akshay
AU - Chien, Te Yu
AU - Dulal, Rabindra
AU - Balasubramanian, Ganesh
AU - Wang, Aaron
AU - Chen, Wei
N1 - Funding Information:
Authors acknowledge grant support from National Science Foundation (NSF) CMMI-1662435, 1662509 and 1753770 under the Design of Engineering Material Systems (DEMS) program, as well as the support from NSF EEC 1530734.
Publisher Copyright:
Copyright © 2018 ASME
PY - 2018
Y1 - 2018
N2 - Organic Photovoltaic Cells (OPVCs), having received significant attention over the last decade, are yet to be established as viable alternatives to conventional solar cells due to their low power conversion efficiency (PCE). Complex interactions of several phenomena coupled with the lack of understanding regarding the influence of fabrication conditions and nanostructure morphology have been major barriers to realizing higher PCE. To this end, we propose a computational microstructural design framework addressing the Processing–Structure–Performance (PSP) linkages for designing the active layer of P3HT:PCBM based OPVCs conforming to bulk heterojunction architecture. The framework pivots around the Spectral Density Function (SDF), a frequency space microstructure characterization and reconstruction methodology, for microstructure design representation. Nanostructure images obtained by novel Scanning Tunneling Microscopy are used to validate the applicability of SDF for representing active layer morphology in OPVCs. SDF enables a low dimensional microstructure representation that is crucial in formulating a parametrized microstructure optimization scheme. A level-cut Gaussian Random Field (governed by SDF) technique is used to generate reconstructions that serve as Representative Volume Elements (RVEs) for structure-performance simulations. A novel structure-performance simulation approach is developed using physics-based performance metric, Incident Photon to Converted Electron (IPCE) ratio, to account for the impact of microstructural features on OPVC performance. Finally, an SDF based computational IPCE optimization study using metamodels created using design of computer experiments over three design variables results in 36.75% increase in IPCE, underlining the efficacy of proposed design framework.
AB - Organic Photovoltaic Cells (OPVCs), having received significant attention over the last decade, are yet to be established as viable alternatives to conventional solar cells due to their low power conversion efficiency (PCE). Complex interactions of several phenomena coupled with the lack of understanding regarding the influence of fabrication conditions and nanostructure morphology have been major barriers to realizing higher PCE. To this end, we propose a computational microstructural design framework addressing the Processing–Structure–Performance (PSP) linkages for designing the active layer of P3HT:PCBM based OPVCs conforming to bulk heterojunction architecture. The framework pivots around the Spectral Density Function (SDF), a frequency space microstructure characterization and reconstruction methodology, for microstructure design representation. Nanostructure images obtained by novel Scanning Tunneling Microscopy are used to validate the applicability of SDF for representing active layer morphology in OPVCs. SDF enables a low dimensional microstructure representation that is crucial in formulating a parametrized microstructure optimization scheme. A level-cut Gaussian Random Field (governed by SDF) technique is used to generate reconstructions that serve as Representative Volume Elements (RVEs) for structure-performance simulations. A novel structure-performance simulation approach is developed using physics-based performance metric, Incident Photon to Converted Electron (IPCE) ratio, to account for the impact of microstructural features on OPVC performance. Finally, an SDF based computational IPCE optimization study using metamodels created using design of computer experiments over three design variables results in 36.75% increase in IPCE, underlining the efficacy of proposed design framework.
UR - http://www.scopus.com/inward/record.url?scp=85057056499&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057056499&partnerID=8YFLogxK
U2 - 10.1115/DETC201886154
DO - 10.1115/DETC201886154
M3 - Conference contribution
AN - SCOPUS:85057056499
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 44th Design Automation Conference
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018
Y2 - 26 August 2018 through 29 August 2018
ER -