A strategy for labeling data for the neural adaptation of a powered lower limb prosthesis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Pattern recognition algorithms that use EMG signals have been proposed to help control powered lower limb prostheses. These algorithms do not automatically compensate for disturbances in EMG signals, resulting in deterioration of algorithm accuracies. Supervised adaptive pattern recognition algorithms can solve this problem, but require correct labeling of new data. Information from embedded mechanical sensors can be compared to the characteristic gait profiles of the different modes to identify the mode of the user's most recent stride and provide a label for new data. The purpose of this study was to develop a gait pattern estimator (GPE) that could automatically make such a comparison. The GPE output was used to supervise an adaptive EMG-based pattern recognition algorithm. Our results indicate that using GPE-based adaptation helped prevent classification errors that would otherwise occur between experimental sessions. The GPE could accurately label new data with a low error rate of approx. 2%. The low error rate of the GPE was reflected in the accuracy of an adapted pattern recognition algorithm. The error rate of the adapted algorithm that was supervised by the GPE was not significantly different from one that used perfect supervision.

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3090-3093
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
CountryUnited States
CityChicago
Period8/26/148/30/14

    Fingerprint

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering

Cite this

Spanias, J. A., Perreault, E. J., & Hargrove, L. J. (2014). A strategy for labeling data for the neural adaptation of a powered lower limb prosthesis. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 (pp. 3090-3093). [6944276] (2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/EMBC.2014.6944276