A strategy for minimizing the effect of misclassifications during real time pattern recognition myoelectric control

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations

Abstract

Pattern recognition myoelectric control in combination with targeted muscle reinnervation (TMR) may provide better real-time control of upper limb prostheses. Current pattern recognition algorithms can classify movements with an off-line accuracy of ~95%. When amputees use these systems to control prostheses, motion misclassifications may hinder their performance. This study investigated the use of a decision based velocity profile that limited movement speed when there was a change in classifier decision. The goal of this velocity ramp was to improve prosthesis positioning by minimizing the effect of unintended movements. Two patients who had undergone TMR surgery controlled either a virtual or physical prosthesis. They completed a Target Achievement Control Test where they commanded a virtual prosthesis into a target posture. Participants showed improved performance metrics of 34% increase in completion rate and 13% faster overall time with the velocity ramp compared to without the velocity ramp. One participant controlled a physical prosthesis and in three minutes was able to create a tower of 1" cubes seven blocks tall with the velocity ramp compared to a tower of only two blocks tall in the control condition. These results suggest that using a pattern recognition system with a decision based velocity profile may improve user performance.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages1327-1330
Number of pages4
ISBN (Print)9781424432967
DOIs
StatePublished - Jan 1 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Other

Other31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
CountryUnited States
CityMinneapolis, MN
Period9/2/099/6/09

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • Medicine(all)

Fingerprint Dive into the research topics of 'A strategy for minimizing the effect of misclassifications during real time pattern recognition myoelectric control'. Together they form a unique fingerprint.

Cite this