TY - JOUR
T1 - A surrogate molecular approach for the detection of Philadelphia chromosome–like B-acute lymphoblastic leukemia
AU - Gupta, Dikshat Gopal
AU - Varma, Neelam
AU - Abdulkadir, Sarki Abba
AU - Sreedharanunni, Sreejesh
AU - Sachdeva, Man Updesh Singh
AU - Naseem, Shano
AU - Bose, Parveen
AU - Binota, Jogeshwar
AU - Malhotra, Pankaj
AU - Khadwal, Alka
AU - Trehan, Amita
AU - Varma, Subhash
N1 - Publisher Copyright:
© 2023 American Cancer Society.
PY - 2024/3/1
Y1 - 2024/3/1
N2 - Background: Philadelphia chromosome (Ph)–like B-acute lymphoblastic leukemia (B-ALL) is a clinically significant, high-risk genetic subtype of B-ALL cases. There are few data on the incidence, characterization, and treatment outcomes of Ph-like ALL cases from low- and middle-income countries. There is a pressing need to establish a well-organized/cost-effective approach for identifying Ph-like ALL instances. Methods: Multiplex reverse transcriptase polymerase chain reaction, nCounter NanoString, and fluorescence in situ hybridization were used to detect and characterize Ph-like ALL cases among recurrent genetic abnormalities (RGA)neg B-ALL cases. At the end of induction therapy, flow cytometry-minimal residual disease (MRD) assay was used to quantify MRD positivity in Ph-like ALL cases. Results: Of 130 newly diagnosed B-ALL cases, 25% (BCR::ABL1), 4% (ETV6::RUNX1), 5% (TCF3::PBX1), 2% (KM2TA::AFF1), and 65% RGAneg B-ALL cases were revealed by multiplex reverse transcriptase polymerase chain reaction. Among RGAneg B-ALL cases, 24% Ph-like ALL cases using nCounter NanoString were identified, with 48% CRLF2high cases with 45% CRLF2::P2RY8 and 18% CRLF2::IGH rearrangements(∼r) revealed by fluorescence in situ hybridization. In 52% of CRLF2low cases, 17% ABL1 and JAK2∼r 8% EPOR::IGH & PDGRFB∼r were identified. Ph-like ALL cases had higher total leukocyte count (p <.05), male preponderance (p <.05), and high MRD-positivity/induction failure compared with RGAneg B-ALL cases. Furthermore, in Ph-like ALL cases, 11 significant genes using quantitative polymerase chain reaction were identified and validated. CRLF2, IGJ, CEACAM6, MUC4, SPATS2L and NRXN3 genes were overexpressed and show statistical significance (p <.05) in Ph-like ALL cases. Conclusions: This study showed the high incidence of Ph-like ALL cases with kinase activating alterations and treatment outcomes from low- and middle-income region. Furthermore, a surrogate cost-effective multiplex panel of 11 overexpressed genes for the prompt detection of Ph-like ALL cases is proposed. Plain Language Summary: Identification of recurrent gene abnormalities (RGA)neg B-acute lymphoblastic leukemia (B-ALL) cases using multiplex-reverse transcriptase polymerase chain reaction. Identification and characterization of Philadelphia (Ph)–like ALL cases using nCounter NanoString gene expression profiling and fluorescence in situ hybridization. Furthermore, Ph-like ALL cases were characterized according to CRLF2 expression and kinase-activating genomic alterations. Minimal residual disease of Ph-like ALL cases were quantified using flow cytometry-minimal residual disease assay. A surrogate molecular approach was established to detect Ph-like ALL cases from low- and middle-income countries.
AB - Background: Philadelphia chromosome (Ph)–like B-acute lymphoblastic leukemia (B-ALL) is a clinically significant, high-risk genetic subtype of B-ALL cases. There are few data on the incidence, characterization, and treatment outcomes of Ph-like ALL cases from low- and middle-income countries. There is a pressing need to establish a well-organized/cost-effective approach for identifying Ph-like ALL instances. Methods: Multiplex reverse transcriptase polymerase chain reaction, nCounter NanoString, and fluorescence in situ hybridization were used to detect and characterize Ph-like ALL cases among recurrent genetic abnormalities (RGA)neg B-ALL cases. At the end of induction therapy, flow cytometry-minimal residual disease (MRD) assay was used to quantify MRD positivity in Ph-like ALL cases. Results: Of 130 newly diagnosed B-ALL cases, 25% (BCR::ABL1), 4% (ETV6::RUNX1), 5% (TCF3::PBX1), 2% (KM2TA::AFF1), and 65% RGAneg B-ALL cases were revealed by multiplex reverse transcriptase polymerase chain reaction. Among RGAneg B-ALL cases, 24% Ph-like ALL cases using nCounter NanoString were identified, with 48% CRLF2high cases with 45% CRLF2::P2RY8 and 18% CRLF2::IGH rearrangements(∼r) revealed by fluorescence in situ hybridization. In 52% of CRLF2low cases, 17% ABL1 and JAK2∼r 8% EPOR::IGH & PDGRFB∼r were identified. Ph-like ALL cases had higher total leukocyte count (p <.05), male preponderance (p <.05), and high MRD-positivity/induction failure compared with RGAneg B-ALL cases. Furthermore, in Ph-like ALL cases, 11 significant genes using quantitative polymerase chain reaction were identified and validated. CRLF2, IGJ, CEACAM6, MUC4, SPATS2L and NRXN3 genes were overexpressed and show statistical significance (p <.05) in Ph-like ALL cases. Conclusions: This study showed the high incidence of Ph-like ALL cases with kinase activating alterations and treatment outcomes from low- and middle-income region. Furthermore, a surrogate cost-effective multiplex panel of 11 overexpressed genes for the prompt detection of Ph-like ALL cases is proposed. Plain Language Summary: Identification of recurrent gene abnormalities (RGA)neg B-acute lymphoblastic leukemia (B-ALL) cases using multiplex-reverse transcriptase polymerase chain reaction. Identification and characterization of Philadelphia (Ph)–like ALL cases using nCounter NanoString gene expression profiling and fluorescence in situ hybridization. Furthermore, Ph-like ALL cases were characterized according to CRLF2 expression and kinase-activating genomic alterations. Minimal residual disease of Ph-like ALL cases were quantified using flow cytometry-minimal residual disease assay. A surrogate molecular approach was established to detect Ph-like ALL cases from low- and middle-income countries.
KW - BCR-ABL1/Ph-like acute lymphoblastic leukemia (ALL)
KW - differentially expressed (DE) genes
KW - fluorescence in situ hybridization (FISH)
KW - multiplex reverse transcriptase (RT)-polymerase chain reaction (PCR)
KW - recurrent gene abnormalities (RGA), quantitative real-time PCR (qPCR)
UR - http://www.scopus.com/inward/record.url?scp=85173667267&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85173667267&partnerID=8YFLogxK
U2 - 10.1002/cncr.35051
DO - 10.1002/cncr.35051
M3 - Article
C2 - 37819686
AN - SCOPUS:85173667267
SN - 0008-543X
VL - 130
SP - 713
EP - 726
JO - cancer
JF - cancer
IS - 5
ER -