TY - GEN
T1 - A system uncertainty propagation approach with model uncertainty quantification in multidisciplinary design
AU - Jiang, Zhen
AU - Li, Wei
AU - Apley, Daniel W.
AU - Chen, Wei
N1 - Publisher Copyright:
Copyright © 2014 by ASME.
PY - 2014
Y1 - 2014
N2 - The performance of a multidisciplinary system is inevitably affected by various sources of uncertainties, usually categorized as aleatory (e.g. input variability) or epistemic (e.g. model uncertainty) uncertainty. In the framework of design under uncertainty, all sources of uncertainties should be aggregated to assess the uncertainty of system quantities of interest (QOIs). In a multidisciplinary design system, uncertainty propagation refers to the analysis that quantifies the overall uncertainty of system QOIs resulting from all sources of aleatory and epistemic uncertainty originating in the individual disciplines. However, due to the complexity of multidisciplinary simulation, especially the coupling relationships between individual disciplines, many uncertainty propagation approaches in the existing literature only consider aleatory uncertainty and ignore the impact of epistemic uncertainty. In this paper, we address the issue of efficient uncertainty quantification of system QOIs considering both aleatory and epistemic uncertainties. We propose a spatialrandom-process (SRP) based multidisciplinary uncertainty analysis (MUA) method that, subsequent to SRP-based disciplinary model uncertainty quantification, fully utilizes the structure of SRP emulators and leads to compact analytical formulas for assessing statistical moments of uncertain QOIs. The proposed method is applied to a benchmark electronics packaging problem. To demonstrate the effectiveness of the method, the estimated low-order statistical moments of the QOIs are compared to the results from Monte Carlo simulations.
AB - The performance of a multidisciplinary system is inevitably affected by various sources of uncertainties, usually categorized as aleatory (e.g. input variability) or epistemic (e.g. model uncertainty) uncertainty. In the framework of design under uncertainty, all sources of uncertainties should be aggregated to assess the uncertainty of system quantities of interest (QOIs). In a multidisciplinary design system, uncertainty propagation refers to the analysis that quantifies the overall uncertainty of system QOIs resulting from all sources of aleatory and epistemic uncertainty originating in the individual disciplines. However, due to the complexity of multidisciplinary simulation, especially the coupling relationships between individual disciplines, many uncertainty propagation approaches in the existing literature only consider aleatory uncertainty and ignore the impact of epistemic uncertainty. In this paper, we address the issue of efficient uncertainty quantification of system QOIs considering both aleatory and epistemic uncertainties. We propose a spatialrandom-process (SRP) based multidisciplinary uncertainty analysis (MUA) method that, subsequent to SRP-based disciplinary model uncertainty quantification, fully utilizes the structure of SRP emulators and leads to compact analytical formulas for assessing statistical moments of uncertain QOIs. The proposed method is applied to a benchmark electronics packaging problem. To demonstrate the effectiveness of the method, the estimated low-order statistical moments of the QOIs are compared to the results from Monte Carlo simulations.
UR - http://www.scopus.com/inward/record.url?scp=84961380577&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84961380577&partnerID=8YFLogxK
U2 - 10.1115/DETC201434708
DO - 10.1115/DETC201434708
M3 - Conference contribution
AN - SCOPUS:84961380577
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 40th Design Automation Conference
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014
Y2 - 17 August 2014 through 20 August 2014
ER -