Abstract
Superionic conductors possess liquid-like ionic diffusivity in the solid state, finding wide applicability from electrolytes in energy storage to materials for thermoelectric energy conversion. Type I superionic conductors (for example, AgI, Ag2Se and so on) are defined by a first-order transition to the superionic state and have so far been found exclusively in three-dimensional crystal structures. Here, we reveal a two-dimensional type I superionic conductor, α-KAg3Se2, by scattering techniques and complementary simulations. Quasi-elastic neutron scattering and ab initio molecular dynamics simulations confirm that the superionic Ag+ ions are confined to subnanometre sheets, with the simulated local structure validated by experimental X-ray powder pair-distribution-function analysis. Finally, we demonstrate that the phase transition temperature can be controlled by chemical substitution of the alkali metal ions that compose the immobile charge-balancing layers. Our work thus extends the known classes of superionic conductors and will facilitate the design of new materials with tailored ionic conductivities and phase transitions.
Original language | English (US) |
---|---|
Pages (from-to) | 1683-1688 |
Number of pages | 6 |
Journal | Nature materials |
Volume | 20 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2021 |
Funding
We are indebted to W. Xu for assistance in the acquisition and analysis of X-ray total scattering data and to E. Mamontov for valuable discussions concerning the QENS data analysis. M.J.J. acknowledges HORIBA-Motor Industry Research Association (MIRA), University College London (UCL) and the Engineering and Physical Sciences Research Council (EPSRC) (EP/R513143/1) for a Collaborative Awards in Science and Engineering (CASE) studentship. This work was performed primarily at the Materials Science Division at Argonne National Laboratory, supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. We gratefully acknowledge the computing resources provided on Bebop, the high-performance computing clusters operated by the Laboratory Computing Resource Center at Argonne National Laboratory. First-principles modelling at Duke University (J.D., O.D.) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under award no. DE-SC0019299. Work at Oak Ridge National Laboratory’s Spallation Neutron Source is supported by the US Department of Energy, Office of Basic Energy Sciences. The Oak Ridge National Laboratory is managed by UT–Battelle for the US Department of Energy under contract no. DEAC05-00OR22725. This work made use of the Integrated Molecular Structure Education and Research Center (IMSERC) facility at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-2025633) and Northwestern University. A.J.E.R. and M.J.J. gratefully acknowledge the Faraday Institution Lithium-Sulfur Technology Accelerator (LiSTAR) programme (FIRG014, EP/S003053/1) for funding.
ASJC Scopus subject areas
- General Chemistry
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- General Materials Science