A unified framework for statistical timing analysis with coupling and multiple input switching

Debjit Sinha*, Hai Zhou

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations

Abstract

As technology scales to smaller dimensions, increasing process variations, coupling induced delay variations and multiple input switching effects make timing veri cation extremely challenging. In this paper we establish a theoretical framework for statistical timing analysis with coupling and multiple input switching. We prove the convergence of our proposed iterative approach and discuss implementation issues under the assumption of a Gaussian distribution for the parameters of variation. A statistical timer based on our proposed approach is developed and experimental results are presented for the ISCAS benchmarks. We juxtapose our timer with a single pass, non iterative statistical timer that does not consider the mutual dependence of coupling with timing and another statistical timer that handles coupling deterministically. Monte Carlo simulations reveal a distinct gain (up to 24%,) in accuracy by our approach in comparison to the others mentioned.

Original languageEnglish (US)
Title of host publicationProceedings of theICCAD-2005
Subtitle of host publicationInternational Conference on Computer-Aided Design
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages837-843
Number of pages7
ISBN (Print)078039254X, 9780780392540
DOIs
StatePublished - 2005
EventICCAD-2005: IEEE/ACM International Conference on Computer-Aided Design, 2005 - San Jose, CA, United States
Duration: Nov 6 2005Nov 10 2005

Publication series

NameIEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
Volume2005
ISSN (Print)1092-3152

Other

OtherICCAD-2005: IEEE/ACM International Conference on Computer-Aided Design, 2005
CountryUnited States
CitySan Jose, CA
Period11/6/0511/10/05

ASJC Scopus subject areas

  • Software
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'A unified framework for statistical timing analysis with coupling and multiple input switching'. Together they form a unique fingerprint.

Cite this