TY - JOUR
T1 - Ab initio studies of the electronic structure of defects in PbTe
AU - Ahmad, Salameh
AU - Mahanti, S. D.
AU - Hoang, Khang
AU - Kanatzidis, M. G.
PY - 2006
Y1 - 2006
N2 - Understanding the detailed electronic structure of deep defect states in narrow band-gap semiconductors has been a challenging problem. Recently, self-consistent ab initio calculations within density functional theory using supercell models have been successful in tackling this problem. In this paper, we carry out such calculations in PbTe, a well-known narrow band-gap semiconductor, for a large class of defects: cationic and anionic substitutional impurities of different valence, and cationic and anionic vacancies. For the cationic defects, we study the chemical trends in the position of defect levels by looking at series of compounds R Pb2n-1 Te2n, where R is vacancy or monovalent, divalent, or trivalent atom. Similarly, for anionic defects, we study compounds M Pb2n Te2n-1, where M is vacancy, S, Se or I. We find that the density of states near the top of the valence band and the bottom of the conduction band get significantly modified for most of these defects. This suggests that the transport properties of PbTe in the presence of impurities may not always be interpreted by simple carrier doping (from bound impurity states in the gap) concepts, confirming such ideas developed from qualitative and semiquantitative arguments.
AB - Understanding the detailed electronic structure of deep defect states in narrow band-gap semiconductors has been a challenging problem. Recently, self-consistent ab initio calculations within density functional theory using supercell models have been successful in tackling this problem. In this paper, we carry out such calculations in PbTe, a well-known narrow band-gap semiconductor, for a large class of defects: cationic and anionic substitutional impurities of different valence, and cationic and anionic vacancies. For the cationic defects, we study the chemical trends in the position of defect levels by looking at series of compounds R Pb2n-1 Te2n, where R is vacancy or monovalent, divalent, or trivalent atom. Similarly, for anionic defects, we study compounds M Pb2n Te2n-1, where M is vacancy, S, Se or I. We find that the density of states near the top of the valence band and the bottom of the conduction band get significantly modified for most of these defects. This suggests that the transport properties of PbTe in the presence of impurities may not always be interpreted by simple carrier doping (from bound impurity states in the gap) concepts, confirming such ideas developed from qualitative and semiquantitative arguments.
UR - http://www.scopus.com/inward/record.url?scp=33750211067&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33750211067&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.74.155205
DO - 10.1103/PhysRevB.74.155205
M3 - Article
AN - SCOPUS:33750211067
SN - 1098-0121
VL - 74
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 15
M1 - 155205
ER -