Absolute metal-ligand σ bond enthalpies in group 4 metallocenes. A thermochemical, structural, photoelectron spectroscopic, and ab initio quantum chemical investigation

Wayne A. King, Santo Di Bella, Antonino Gulino, Giuseppe Lanza, Ignazio L. Fragalà, Charlotte L. Stern, Tobin J. Marks*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

59 Scopus citations


Absolute metal-ligand σ bond enthalpies have been determined for a series of titanocene, zirconocene, and hafnocene halides and dimethyls by iodinolytic titration calorimetry. Absolute metal-iodine bond disruption enthalpies were measured by iodination of the monomeric trivalent group 4 metallocenes Cp(tt)2TiI, (Me5C5)2TiI, Cp(tt)2ZrI, and Cp(tt)2HfI (Cp(tt) = η5-1,3-di-tert-butylcyclopentadienyl). Iodinolysis of Cp(tt)2ZrMe2 and Cp(tt)2HfMe2 in turn yields absolute Zr-Me and Hf-Me bond enthalpies. Derived values (kcal/mol) are D[Cp(tt)2Ti(I)-I] = 40.6(5); D[(Me5C5)2Ti(I)-I] = 52.3(6); D[Cp(tt)2Zr(I)-I] = 58.0(5); D[Cp(tt)2Hf(I)-I] = 61.2(4); D[Cp(tt)2Zr-Me2] = 43(1); and D[Cp(tt)2Hf- Me2] = 47.6(9). That D[Cp(tt)2Zr(I)-(I)] ≃ D(I3Zr-I) and D[(Me5C5)2Ti(I)-I] ≃ D(I3Ti-I), while D[Cp(tt)2Ti(I)-I] ≃ D(I3Ti-I) - 12 kcal/mol, argues for more reliable transferability of D(M(IV)-I) in sterically less congested metallocenes. The molecular structures of Cp2(tt)ZrI2, Cp2(tt)ZrI, and Cp2(tt)HfI were determined by X-ray diffraction. In Cp(tt)2ZrI2, the Zr ligation is pseudotetrahedral, and the ring tert-butyl groups 'straddle' the Zr-I bonds to minimize steric interactions. The geometry about Zr in Cp(tt)2ZrI is pseudotrigonal, with contracted Zr-ring centroid and Zr-I distances versus Cp(tt)2grI2, primarily reflecting substantially diminished ligand-ligand repulsive nonbonded interactions in the latter. Cp(tt)2HfI is isomorphous with Cp(tt)2ZrI, and the slightly different metrical parameters are in accord with Hf vs Zr ionic radii. The significant differences in interligand repulsive interactions in the trivalent versus tetravalent complexes are confirmed by van der Waals calculations. High-resolution UV PE spectra combined with ab initio relativistic effective core potential calculations provide details of electronic structure. Absolute ionization energy values indicate that iodine behaves as both a strong σ and π donor. Trends in the large Cp2MX(n) structural database can be understood in terms of the interplay between electronic and molecular structure factors, which are highly sensitive to the substitution patterns of the cyclopentadienyl ligands and, in particular, to competing σ vs π M-X bonding.

Original languageEnglish (US)
Pages (from-to)355-366
Number of pages12
JournalJournal of the American Chemical Society
Issue number2
StatePublished - Jan 20 1999

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Absolute metal-ligand σ bond enthalpies in group 4 metallocenes. A thermochemical, structural, photoelectron spectroscopic, and ab initio quantum chemical investigation'. Together they form a unique fingerprint.

Cite this