Abstract
Objective. The aim of this study is to assess the accuracy of a surface electromyogram (sEMG) motor unit (MU) decomposition algorithm during low levels of muscle contraction. Approach. A two-source method was used to verify the accuracy of the sEMG decomposition system, by utilizing simultaneous intramuscular and surface EMG recordings from the human first dorsal interosseous muscle recorded during isometric trapezoidal force contractions. Spike trains from each recording type were decomposed independently utilizing two different algorithms, EMGlab and dEMG decomposition algorithms. The degree of agreement of the decomposed spike timings was assessed for three different segments of the EMG signals, corresponding to specified regions in the force task. A regression analysis was performed to examine whether certain properties of the sEMG and force signal can predict the decomposition accuracy. Main results. The average accuracy of successful decomposition among the 119 MUs that were common to both intramuscular and surface records was approximately 95%, and the accuracy was comparable between the different segments of the sEMG signals (i.e., force ramp-up versus steady state force versus combined). The regression function between the accuracy and properties of sEMG and force signals revealed that the signal-to-noise ratio of the action potential and stability in the action potential records were significant predictors of the surface decomposition accuracy. Significance. The outcomes of our study confirm the accuracy of the sEMG decomposition algorithm during low muscle contraction levels and provide confidence in the overall validity of the surface dEMG decomposition algorithm.
Original language | English (US) |
---|---|
Article number | 026007 |
Journal | Journal of Neural Engineering |
Volume | 11 |
Issue number | 2 |
DOIs | |
State | Published - Apr 2014 |
Funding
Keywords
- motor unit
- motor unit decomposition
- surface electromyogram
- two-source
- validation
ASJC Scopus subject areas
- Cellular and Molecular Neuroscience
- Biomedical Engineering