TY - JOUR
T1 - Acetaminophen-induced proliferation of estrogen-responsive breast cancer cells is associated with increases in c-myc RNA expression and NF-κB activity
AU - Gadd, Samantha L.
AU - Hobbs, Gerry
AU - Miller, Michael R.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2002
Y1 - 2002
N2 - Studies reported here tested the hypothesis that acetaminophen stimulates proliferation of E2-responsive cells by inducing expression of E2-regulated genes. Ribonuclease protection assays compared the effects of acetaminophen and E2 on expression of selected genes (c-myc, c-fos, cyclin D1, bcl-2, bax, gadd45, mcl-1, p53, p21CIP1/WAF1, and bcl-xL) in E2-responsive breast cancer (MCF-7) and endometrial adenocarcinoma (Ishikawa) cells as well as in E2-nonresponsive (MDA-MB-231) breast cancer cells. Acetaminophen and E2 increased c-myc RNA levels in MCF-7 cells, consistent with a mitogenic activity of these compounds in MCF-7 cells. However, the magnitude and time course of acetaminophen and E2 induction of c-myc differed. Neither acetaminophen nor E2 induced c-myc in MDA-MB-231 cells, whereas E2, but not acetaminophen, weakly induced c-myc expression in Ishikawa cells. Furthermore, in these 3 cell types, the expression patterns of the other genes differed dramatically in response to acetaminophen and to E2, indicating that acetaminophen does not activate ER as a transcription factor in the same manner as does E2. Additionally, gel shift assays demonstrated that in MCF-7 cells, acetaminophen increased NF-κB activity ∼40% and did not alter AP-1 activity, whereas E2 increased AP-1 activity ∼50% and did not increase NF-B activity. These studies indicate that acetaminophen effects on gene expression and cell proliferation depend more on cell type/context than on the presence of ER.
AB - Studies reported here tested the hypothesis that acetaminophen stimulates proliferation of E2-responsive cells by inducing expression of E2-regulated genes. Ribonuclease protection assays compared the effects of acetaminophen and E2 on expression of selected genes (c-myc, c-fos, cyclin D1, bcl-2, bax, gadd45, mcl-1, p53, p21CIP1/WAF1, and bcl-xL) in E2-responsive breast cancer (MCF-7) and endometrial adenocarcinoma (Ishikawa) cells as well as in E2-nonresponsive (MDA-MB-231) breast cancer cells. Acetaminophen and E2 increased c-myc RNA levels in MCF-7 cells, consistent with a mitogenic activity of these compounds in MCF-7 cells. However, the magnitude and time course of acetaminophen and E2 induction of c-myc differed. Neither acetaminophen nor E2 induced c-myc in MDA-MB-231 cells, whereas E2, but not acetaminophen, weakly induced c-myc expression in Ishikawa cells. Furthermore, in these 3 cell types, the expression patterns of the other genes differed dramatically in response to acetaminophen and to E2, indicating that acetaminophen does not activate ER as a transcription factor in the same manner as does E2. Additionally, gel shift assays demonstrated that in MCF-7 cells, acetaminophen increased NF-κB activity ∼40% and did not alter AP-1 activity, whereas E2 increased AP-1 activity ∼50% and did not increase NF-B activity. These studies indicate that acetaminophen effects on gene expression and cell proliferation depend more on cell type/context than on the presence of ER.
KW - Acetaminophen
KW - Cell cycle
KW - Estrogen receptor
KW - NF-κB
KW - c-myc gene
UR - http://www.scopus.com/inward/record.url?scp=0036204416&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036204416&partnerID=8YFLogxK
U2 - 10.1093/toxsci/66.2.233
DO - 10.1093/toxsci/66.2.233
M3 - Article
C2 - 11896290
AN - SCOPUS:0036204416
SN - 1096-6080
VL - 66
SP - 233
EP - 243
JO - Toxicological Sciences
JF - Toxicological Sciences
IS - 2
ER -