TY - GEN
T1 - Achievable rates of Gaussian channels with realistic duty cycle and power constraints
AU - Li, Hui
AU - Guo, Dongning
PY - 2012
Y1 - 2012
N2 - Many wireless communication systems are subject to duty cycle constraint, that is, a radio only actively transmits signals over a fraction of the time. For example, it is desirable to have a small duty cycle in some low-power systems; a half-duplex radio cannot keep transmitting if it wishes to receive useful signals; and a cognitive radio needs to listen to the channel frequently to detect primary users. Zhang and Guo have shown that the capacity of a Gaussian channel subject to an idealized duty cycle constraint as well as average transmission power constraint is achieved by discrete independent and identically distributed (i.i.d.) on-off signaling in lieu of Gaussian signaling. This paper extends the previous results by considering a more realistic duty cycle constraint where the extra cost of transitions between transmissions and nontransmissions due to pulse shaping is accounted for. The capacity-achieving input is no longer independent over time and is hard to compute. A lower bound of the input-output mutual information as a function of the input distribution is developed, which is shown to be maximized by a first-order Markov process, the distribution of which is also discrete and can be computed efficiently. Simulation results show that the Markov input is superior to i.i.d. inputs for the Gaussian channel subject to the realistic duty cycle and average power constraints.
AB - Many wireless communication systems are subject to duty cycle constraint, that is, a radio only actively transmits signals over a fraction of the time. For example, it is desirable to have a small duty cycle in some low-power systems; a half-duplex radio cannot keep transmitting if it wishes to receive useful signals; and a cognitive radio needs to listen to the channel frequently to detect primary users. Zhang and Guo have shown that the capacity of a Gaussian channel subject to an idealized duty cycle constraint as well as average transmission power constraint is achieved by discrete independent and identically distributed (i.i.d.) on-off signaling in lieu of Gaussian signaling. This paper extends the previous results by considering a more realistic duty cycle constraint where the extra cost of transitions between transmissions and nontransmissions due to pulse shaping is accounted for. The capacity-achieving input is no longer independent over time and is hard to compute. A lower bound of the input-output mutual information as a function of the input distribution is developed, which is shown to be maximized by a first-order Markov process, the distribution of which is also discrete and can be computed efficiently. Simulation results show that the Markov input is superior to i.i.d. inputs for the Gaussian channel subject to the realistic duty cycle and average power constraints.
UR - http://www.scopus.com/inward/record.url?scp=84867492436&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84867492436&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2012.6284122
DO - 10.1109/ISIT.2012.6284122
M3 - Conference contribution
AN - SCOPUS:84867492436
SN - 9781467325790
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 304
EP - 308
BT - 2012 IEEE International Symposium on Information Theory Proceedings, ISIT 2012
T2 - 2012 IEEE International Symposium on Information Theory, ISIT 2012
Y2 - 1 July 2012 through 6 July 2012
ER -