Achieving Design Closure Through Delay Relaxation Parameter

Ankur Srivastava*, Seda Ogrenci Memik, Bo Kyung Choi, Majid Sarrafzadeh

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

6 Scopus citations

Abstract

Current design automation methodologies are becoming incapable of achieving design closure especially in the presence of deep submicron effects. This paper addresses the issue of design closure from a high level point of view. A new metric called delay relaxation parameter (DRP)for RTL (Register Transfer Level) designs is proposed. DRP essentially captures the degree of delay relaxation that the design can tolerate without violating the clock constraint. This metric when optimized results in quicker design flow. Algorithms to optimize DRP are formulated and their optimality are investigated. Experimental results are conducted using a state of the an design flow with Synopsys Design Compiler followed by Cadence Place and Route. Our approach of optimizing DRP resulted in lesser design iterations and faster design closure as compared to designs generated through Synopsys Behavioral Compiler and a representative academic design flow.

Original languageEnglish (US)
Pages (from-to)54-57
Number of pages4
JournalIEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers
DOIs
StatePublished - 2003
EventIEEE/ACM International Conference on Computer Aided Design ICCAD 2003: IEEE/ACM Digest of Technical Papers - San Jose, CA, United States
Duration: Nov 9 2003Nov 13 2003

ASJC Scopus subject areas

  • Software
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Achieving Design Closure Through Delay Relaxation Parameter'. Together they form a unique fingerprint.

Cite this