TY - JOUR
T1 - Activation of phosphatidylinositol 3-kinase contributes to insulin-like growth factor I-mediated inhibition of pancreatic β-cell death
AU - Wenli, L. I.U.
AU - Chin-Chance, Catherine
AU - Eun-Jig, L. E.E.
AU - Lowe, William L.
PY - 2002/10/1
Y1 - 2002/10/1
N2 - To begin to determine whether IGF-I treatment represents a potential means of enhancing the survival of islet cell grafts after transplantation, the present studies established a model of β-cell death secondary to loss of trophic support and examined the ability of IGF-I to prevent cell death. The studies were performed using the rat pancreatic β-cell line, INS-1. Incubating INS-1 cells in RPMI 1640 and 0.25% BSA for 48 h increased cell death, as determined by lactate dehydrogenase release, compared with that of cells maintained in RPMI and 10% fetal calf serum. Addition of 100 ng/ml IGF-I to the serumfree medium decreased lactate dehydrogenase release to a level comparable to that found in cells maintained in fetal calf serum. Similar results were seen using a mouse β-cell line, MIN6, infected with an adenovirus expressing IGF-I. Examination of IGF-I-stimulated signaling demonstrated that IGF-I increased the phosphorylation of protein kinase B in both cell lines, whereas IGF-I-induced phosphorylation of the MAPKs, ERK1 and -2, was observed only in INS-1 cells. The effect of IGF-I on phosphorylation of substrates of phosphatidylinositol 3-kinase (PI 3-kinase) or protein kinase B was also examined in INS-1 cells. IGF-I increased the phosphorylation of glycogen synthase kinase 3β, BAD, FKHR, and p70S6 kinase. Another pathway that has been shown to mediate the protective of IGF-I in some cell types is activation of cAMP response element-binding protein (CREB). IGF-I increased CREB phosphorylation at a concentration as low as 10 ng/ml, and this effect was inhibited by H89, a PKA inhibitor, and PD98059, a MAPK kinase inhibitor. Consistent with the effect of IGF-I on CREB phosphorylation, IGF-I increased the transcriptional activity of CREB, although it had no effect on CREB binding to DNA. Use of inhibitors of the PI3-kinase (LY 294002) or ERK (PD98059) pathways or CREB phosphorylation (H89) in the cell death assay demonstrated partial abrogation of the protective effect of IGF-I with LY 294002. These data demonstrate that IGF-I protects pancreatic β-cells from cell death secondary to loss of trophic support and that, although IGF-I activates several signaling pathways that contribute to its protective effect in other cell types, only activation of PI 3-kinase contributes to this effect in β-cells.
AB - To begin to determine whether IGF-I treatment represents a potential means of enhancing the survival of islet cell grafts after transplantation, the present studies established a model of β-cell death secondary to loss of trophic support and examined the ability of IGF-I to prevent cell death. The studies were performed using the rat pancreatic β-cell line, INS-1. Incubating INS-1 cells in RPMI 1640 and 0.25% BSA for 48 h increased cell death, as determined by lactate dehydrogenase release, compared with that of cells maintained in RPMI and 10% fetal calf serum. Addition of 100 ng/ml IGF-I to the serumfree medium decreased lactate dehydrogenase release to a level comparable to that found in cells maintained in fetal calf serum. Similar results were seen using a mouse β-cell line, MIN6, infected with an adenovirus expressing IGF-I. Examination of IGF-I-stimulated signaling demonstrated that IGF-I increased the phosphorylation of protein kinase B in both cell lines, whereas IGF-I-induced phosphorylation of the MAPKs, ERK1 and -2, was observed only in INS-1 cells. The effect of IGF-I on phosphorylation of substrates of phosphatidylinositol 3-kinase (PI 3-kinase) or protein kinase B was also examined in INS-1 cells. IGF-I increased the phosphorylation of glycogen synthase kinase 3β, BAD, FKHR, and p70S6 kinase. Another pathway that has been shown to mediate the protective of IGF-I in some cell types is activation of cAMP response element-binding protein (CREB). IGF-I increased CREB phosphorylation at a concentration as low as 10 ng/ml, and this effect was inhibited by H89, a PKA inhibitor, and PD98059, a MAPK kinase inhibitor. Consistent with the effect of IGF-I on CREB phosphorylation, IGF-I increased the transcriptional activity of CREB, although it had no effect on CREB binding to DNA. Use of inhibitors of the PI3-kinase (LY 294002) or ERK (PD98059) pathways or CREB phosphorylation (H89) in the cell death assay demonstrated partial abrogation of the protective effect of IGF-I with LY 294002. These data demonstrate that IGF-I protects pancreatic β-cells from cell death secondary to loss of trophic support and that, although IGF-I activates several signaling pathways that contribute to its protective effect in other cell types, only activation of PI 3-kinase contributes to this effect in β-cells.
UR - http://www.scopus.com/inward/record.url?scp=0036772979&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036772979&partnerID=8YFLogxK
U2 - 10.1210/en.2002-220058
DO - 10.1210/en.2002-220058
M3 - Article
C2 - 12239091
AN - SCOPUS:0036772979
SN - 0013-7227
VL - 143
SP - 3802
EP - 3812
JO - Endocrinology
JF - Endocrinology
IS - 10
ER -