Abstract
Machine learning allows detecting specific physical activities using data from wearable sensors. Such a quantification of patient mobility over time promises to accurately inform clinical decisions for physical rehabilitation. There are two strategies of setting up the machine learning problem: detect one patient's activities using data from the same patient (personal model) or detect their activities using data from other patients (global model), and we currently do not know if personal models are necessary. Here we consider the problem of detecting physical activities from a waist-worn accelerometer in patients who use a knee-ankle-foot orthosis (KAFO) to walk. We show that while a model based on healthy subjects has low accuracy, the global model performs as well as the personal model. This is encouraging because it suggests that condition-specific activity recognition algorithms are sufficient and that no data from individual patients is necessary.
Original language | English (US) |
---|---|
Title of host publication | 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 3265-3268 |
Number of pages | 4 |
ISBN (Electronic) | 9781457702204 |
DOIs | |
State | Published - Oct 13 2016 |
Event | 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States Duration: Aug 16 2016 → Aug 20 2016 |
Publication series
Name | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
---|---|
Volume | 2016-October |
ISSN (Print) | 1557-170X |
Other
Other | 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 |
---|---|
Country/Territory | United States |
City | Orlando |
Period | 8/16/16 → 8/20/16 |
ASJC Scopus subject areas
- Signal Processing
- Biomedical Engineering
- Computer Vision and Pattern Recognition
- Health Informatics