Abstract
Background: Mitochondrial toxicity resulting in myopathy and lactic acidosis has been described in antiretroviral (ARV)-exposed patients. We hypothesized that myopathy in HIV-infected, ARV-treated children would be associated with metabolic (acylcarnitines) and genetic (variants in metabolic genes) markers of dysfunctional fatty acid oxidation (FAO). Methods: Acylcarnitine profiles (ACP) were analyzed for 74 HIV-infected children on nucleoside reverse transcriptase inhibitor (NRTI)-containing ARV. Thirty-seven participants with ≥2 creatine kinase measurements >500 IU (n = 18) or evidence of echocardiographic cardiomyopathy (n = 19) were matched with 37 participants without myopathy. Single nucleotide polymorphisms (SNPs) in FAO genes were also evaluated. Results: Abnormal ACP was 73% (95% CI: 56%-86%) and 62% (95% CI: 45%-78%) in the myopathic and nonmyopathic groups, respectively. No significant association was found between myopathy and having an abnormal ACP (OR = 2.10, P = 0.22). In univariate analysis, a 1-year increase in NRTI use was associated with a 20% increase in odds of at least 1 ACP abnormality [OR (95% CI) = 1.20 (1.03-1.41); P = 0.02), and a 1-year increase in protease inhibitor use was associated with 28% increase in the odds of having at least 1 ACP abnormality [OR (95% CI) = 1.28 (1.07-1.52); P = 0.006). Three SNPs, all in the gene for the carnitine transporter (SLC22A5), were associated with the cardiomyopathy phenotype. Conclusion: FAO appears to be altered in HIV-infected children with and without myopathy, but abnormal FAO does not fully explain myopathy in ARV-exposed children. Further study of SLC22A5 variation in ARV-exposed people is warranted carnitine transporter dysfunction-related cardiomyopathy may be treatable.
Original language | English (US) |
---|---|
Pages (from-to) | E306-E311 |
Journal | Pediatric Infectious Disease Journal |
Volume | 41 |
Issue number | 8 |
DOIs | |
State | Published - Aug 1 2022 |
Funding
The study was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development with co-funding from the National Institute on Drug Abuse, the National Institute of Allergy and Infectious Diseases, the National Institute of Mental Health, the National Institute of Neurological Disorders and Stroke, the National Institute on Deafness and Other Communication Disorders, the National Institute of Dental and Craniofacial Research, the National Cancer Institute, the National Institute on Alcohol Abuse and Alcoholism, the Office of AIDS Research, and the National Heart, Lung, and Blood Institute through cooperative agreements with the Harvard T.H. Chan School of Public Health (HD052102) (Principal Investigator: George R Seage III; Program Director: Liz Salomon) and the Tulane University School of Medicine (HD052104) (Principal Investigator: Russell Van Dyke; Co-Principal Investigator: Ellen Chadwick; Project Director: Patrick Davis). Data management services were provided by Frontier Science and Technology Research Foundation (PI: Suzanne Siminski), and regulatory services and logistical support were provided by Westat, Inc (PI: Julie Davidson). This study is funded by National Institutes of Health (full funding statement below). B.M.K’s effort on this work was partially funded through the following awards from the National Institutes of Health: UL1TR000075 and KL2TR000076.
Keywords
- HIV
- acylcarnitines
- cardiomyopathy
- fatty acid oxidation
- myopathy
ASJC Scopus subject areas
- Pediatrics, Perinatology, and Child Health
- Microbiology (medical)
- Infectious Diseases