Adaptive rotating-wave approximation for driven open quantum systems

Brian Baker, Andy C.Y. Li, Nicholas Irons, Nathan Earnest, Jens Koch

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


We present a numerical method to approximate the long-time asymptotic solution ρ∞(t) to the Lindblad master equation for an open quantum system under the influence of an external drive. The proposed scheme uses perturbation theory to rank individual drive terms according to their dynamical relevance and adaptively determines an effective Hamiltonian. In the constructed rotating frame, ρ∞ is approximated by a time-independent, nonequilibrium steady state. This steady state can be computed with much better numerical efficiency than asymptotic long-time evolution of the system in the laboratory frame. We illustrate the use of this method by simulating recent transmission measurements of the heavy-fluxonium device, for which ordinary time-dependent simulations are severely challenging due to the presence of metastable states with lifetimes of the order of milliseconds.

Original languageEnglish (US)
Article number052111
JournalPhysical Review A
Issue number5
StatePublished - Nov 8 2018

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Adaptive rotating-wave approximation for driven open quantum systems'. Together they form a unique fingerprint.

Cite this