TY - JOUR
T1 - Adhesion, shape, proliferation, and gene expression of mouse Leydig cells are influenced by extracellular matrix in vitro
AU - Vernon, R. B.
AU - Lane, Timothy F
AU - Angello, J. C.
AU - Sage, H.
PY - 1991
Y1 - 1991
N2 - Interactions between Leydig cells and the extracellular matrix (ECM) within the interstitial compartment of the mammalian testis have not been characterized. We have examined the influence of ECM on adult mouse Leydig cells by culturing the cells on different ECM substrates. Leydig cells adhere weakly to hydrated gels of type I collagen (including those supplemented with collagen types IV, V, or VIII), or to air-dried films of collagen types I, V, or VIII. In contrast, the cells attach firmly to substrates of purified type IV collagen, fibronectin, or laminin. Leydig cells also attach rapidly and adhere strongly to gelled basement membrane matrix derived from the murine Englebreth- Holm-Swarm sarcoma (Matrigel). Leydig cells assume spherical shapes and form aggregates on thick (1.5-mm) layers of Matrigel; however, on thin (0.1-mm) layers, networks of cell clusters linked by cords of elongated cells are formed within 48 h. Similar networks are formed on thick layers of Matrigel that are supplemented with type I collagen. On substrates with high ratios of collagen I to Matrigel or on untreated tissue culture plastic, Leydig cells flatten and do not aggregate. On substrates that induce rounded shapes, proliferation is inhibited and the cells maintain the steroidogenic enzyme 3β-hydroxysteroid dehydrogenase for as long as 2 wk. Under conditions where Leydig cells are flattened, they divide and cease expressing the enzyme. Proliferating Leydig cells also exhibit elevated levels of mRNA for SPARC (Secreted Protein, Acidic and Rich in Cysteine), a Ca2+- binding glycoprotein associated with changes in cell shape that accompany morphogenesis and tissue remodeling. Our results indicate that the shape, association, proliferation, and expression of gene products by Leydig cells can be significantly affected in vitro by altering the composition of the extracellular substratum.
AB - Interactions between Leydig cells and the extracellular matrix (ECM) within the interstitial compartment of the mammalian testis have not been characterized. We have examined the influence of ECM on adult mouse Leydig cells by culturing the cells on different ECM substrates. Leydig cells adhere weakly to hydrated gels of type I collagen (including those supplemented with collagen types IV, V, or VIII), or to air-dried films of collagen types I, V, or VIII. In contrast, the cells attach firmly to substrates of purified type IV collagen, fibronectin, or laminin. Leydig cells also attach rapidly and adhere strongly to gelled basement membrane matrix derived from the murine Englebreth- Holm-Swarm sarcoma (Matrigel). Leydig cells assume spherical shapes and form aggregates on thick (1.5-mm) layers of Matrigel; however, on thin (0.1-mm) layers, networks of cell clusters linked by cords of elongated cells are formed within 48 h. Similar networks are formed on thick layers of Matrigel that are supplemented with type I collagen. On substrates with high ratios of collagen I to Matrigel or on untreated tissue culture plastic, Leydig cells flatten and do not aggregate. On substrates that induce rounded shapes, proliferation is inhibited and the cells maintain the steroidogenic enzyme 3β-hydroxysteroid dehydrogenase for as long as 2 wk. Under conditions where Leydig cells are flattened, they divide and cease expressing the enzyme. Proliferating Leydig cells also exhibit elevated levels of mRNA for SPARC (Secreted Protein, Acidic and Rich in Cysteine), a Ca2+- binding glycoprotein associated with changes in cell shape that accompany morphogenesis and tissue remodeling. Our results indicate that the shape, association, proliferation, and expression of gene products by Leydig cells can be significantly affected in vitro by altering the composition of the extracellular substratum.
UR - http://www.scopus.com/inward/record.url?scp=0026092791&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026092791&partnerID=8YFLogxK
U2 - 10.1095/biolreprod44.1.157
DO - 10.1095/biolreprod44.1.157
M3 - Article
C2 - 2015346
AN - SCOPUS:0026092791
SN - 0006-3363
VL - 44
SP - 157
EP - 170
JO - Biology of reproduction
JF - Biology of reproduction
IS - 1
ER -