Adhesive behavior and detachment mechanisms of bacterial amyloid nanofibers

Ao Wang, Sinan Keten*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Amyloid nanofibers, such as curli nanofibers, have proven capable of adhering strongly to abiotic surfaces. However, the adhesive performance of individual nanofibers and the dependence of this performance on physical properties remain to be characterized. We carried out coarse-grained molecular dynamics simulations to determine the detachment mechanisms of single amyloid fibers from surfaces. Taking a generic model inspired from the curli nanofiber subunit CsgA, we discover that the amyloid nanofibers can undergo three different peeling processes when pulled at a constant rate normal to the surface. Computational phase diagrams built from parametric studies indicate that strong nanofibers with high cohesive energy detach by peeling smoothly away from the substrate while weak fibers break prematurely. At intermediate ratios, hinge formation occurs and the work of peeling the nanofiber is twice the adhesive energy due to the additional energy required to bend the nanofiber during desorption. Varying the geometry of amyloid subunits revealed that the work of peeling decreases for thicker nanofibers, suggesting that the tape-like monomeric structure of amyloids may facilitate better adhesive performance. Our results demonstrate how the dimensions and adhesive and cohesive properties of the amyloid nanofibers can be optimized to resist mechanical peeling.

Original languageEnglish (US)
Article number29
Journalnpj Computational Materials
Issue number1
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • Modeling and Simulation
  • General Materials Science
  • Mechanics of Materials
  • Computer Science Applications


Dive into the research topics of 'Adhesive behavior and detachment mechanisms of bacterial amyloid nanofibers'. Together they form a unique fingerprint.

Cite this