TY - JOUR
T1 - Age-related changes in human macular Bruch's membrane as seen by quick-freeze/deep-etch
AU - Huang, Jiahn Dar
AU - Presley, J. Brett
AU - Chimento, Melissa F.
AU - Curcio, Christine A.
AU - Johnson, Mark
N1 - Funding Information:
We would like to thank Dr Jeffery W. Ruberti for technical assistance. This study is supported by NIH EY014662, NIH EY06109, and The American Health Assistance Foundation.
PY - 2007/8
Y1 - 2007/8
N2 - Lipid-containing inclusions have been observed in human Bruch's membrane (BrM) and are postulated to be associated with age-related maculopathy (ARM), a major cause of legal blindness in developed countries. The dehydration associated with specimen preparation for thin-section transmission electron microscopy causes loss of these inclusions. Better preservation of the ultrastructure of the inclusions and tissue is achieved by using a quick-freeze/deep-etch preparation. We use this technique to examine normal human macular BrM in order to characterize the deposition of the lipid-rich inclusions and their age-related accumulation within different layers of the tissue. We find that various inclusions mentioned in other studies can be formed by combinations of three basic structures: lipoprotein-like particles (LLPs), small granules (SGs) and membrane-like structures. These inclusions are associated with collagen and elastic fibrils by fine filaments. In younger eyes, these inclusions are found mostly in the elastic (EL) and outer collageneous layer (OCL) and occupy a small fraction of the interfibrillar spacing. As age increases, LLPs and SGs gradually fill the interfibrillar spacing of the EL and inner collageneous layer (ICL) of the tissue, and later form a new sublayer, the lipid wall, within the boundary region between the basal lamina of retinal pigment epithelium (RPE) and ICL. Because the formation of the lipid wall only occurs after these inclusions fill the ICL, and it seems unlikely that the LLPs can pass through the packed layer, this result suggests a possible RPE origin of the LLPs that make up the lipid wall.
AB - Lipid-containing inclusions have been observed in human Bruch's membrane (BrM) and are postulated to be associated with age-related maculopathy (ARM), a major cause of legal blindness in developed countries. The dehydration associated with specimen preparation for thin-section transmission electron microscopy causes loss of these inclusions. Better preservation of the ultrastructure of the inclusions and tissue is achieved by using a quick-freeze/deep-etch preparation. We use this technique to examine normal human macular BrM in order to characterize the deposition of the lipid-rich inclusions and their age-related accumulation within different layers of the tissue. We find that various inclusions mentioned in other studies can be formed by combinations of three basic structures: lipoprotein-like particles (LLPs), small granules (SGs) and membrane-like structures. These inclusions are associated with collagen and elastic fibrils by fine filaments. In younger eyes, these inclusions are found mostly in the elastic (EL) and outer collageneous layer (OCL) and occupy a small fraction of the interfibrillar spacing. As age increases, LLPs and SGs gradually fill the interfibrillar spacing of the EL and inner collageneous layer (ICL) of the tissue, and later form a new sublayer, the lipid wall, within the boundary region between the basal lamina of retinal pigment epithelium (RPE) and ICL. Because the formation of the lipid wall only occurs after these inclusions fill the ICL, and it seems unlikely that the LLPs can pass through the packed layer, this result suggests a possible RPE origin of the LLPs that make up the lipid wall.
KW - Bruch's membrane
KW - age-related macular degeneration
KW - age-related maculopathy
KW - electron microscopy
KW - extracellular matrix
KW - lipids
KW - lipoproteins
KW - ultrastructures
UR - http://www.scopus.com/inward/record.url?scp=34447631882&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34447631882&partnerID=8YFLogxK
U2 - 10.1016/j.exer.2007.03.011
DO - 10.1016/j.exer.2007.03.011
M3 - Article
C2 - 17586493
AN - SCOPUS:34447631882
SN - 0014-4835
VL - 85
SP - 202
EP - 218
JO - Experimental eye research
JF - Experimental eye research
IS - 2
ER -