Aggregation Delayed Federated Learning

Ye Xue*, Diego Klabjan, Yuan Luo

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations


Federated learning is a distributed machine learning paradigm where multiple data owners (clients) collaboratively train one machine learning model while keeping data on their own devices. The heterogeneity of client datasets is one of the most important challenges of federated learning algorithms. Studies have found performance reduction with standard federated algorithms, such as FedAvg, on non-IID data. Many existing works on handling non-IID data adopt the same aggregation framework as FedAvg and focus on improving model updates either on the server side or on clients. In this work, we tackle this challenge in a different view by introducing redistribution rounds that delay the aggregation. With delayed aggregations, local models are trained on data that are more representative to the global distribution. The proposed algorithm can also be used as a federated learning paradigm, as an alternative to FedAvg, where other methods can be plugged in. We perform experiments on multiple tasks and show that the proposed framework significantly improves the performance on non-IID data.

Original languageEnglish (US)
Title of host publicationProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022
EditorsShusaku Tsumoto, Yukio Ohsawa, Lei Chen, Dirk Van den Poel, Xiaohua Hu, Yoichi Motomura, Takuya Takagi, Lingfei Wu, Ying Xie, Akihiro Abe, Vijay Raghavan
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages10
ISBN (Electronic)9781665480451
StatePublished - 2022
Event2022 IEEE International Conference on Big Data, Big Data 2022 - Osaka, Japan
Duration: Dec 17 2022Dec 20 2022

Publication series

NameProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022


Conference2022 IEEE International Conference on Big Data, Big Data 2022


  • federated learning
  • heterogeneous data
  • non-IID

ASJC Scopus subject areas

  • Modeling and Simulation
  • Computer Networks and Communications
  • Information Systems
  • Information Systems and Management
  • Safety, Risk, Reliability and Quality
  • Control and Optimization


Dive into the research topics of 'Aggregation Delayed Federated Learning'. Together they form a unique fingerprint.

Cite this