Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel

Monica Kapoor, Dieter Isheim*, Gautam Ghosh, Semyon Vaynman, Morris E. Fine, Yip Wah Chung

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

175 Scopus citations


High-strength low-carbon ferritic steels attaining a maximum yield strength of 1600 MPa by combined Cu and NiAl precipitation-strengthening were developed. The yield strength of the alloys increases monotonically with the total concentration of the principal alloying elements i.e. Mn, Cu, Ni and Al. At 12.40 at.%, a 1600 MPa yield strength is achieved after solution treatment at 950 °C followed by aging at 550 °C for 2 h. For all three alloys investigated, the hardness reached a maximum after 1-2 h aging at 500-550 °C. At peak hardness, the combined precipitation of the body-centered cubic (bcc) Cu-alloy and B2-ordered NiAl-type intermetallic precipitates is observed by atom probe tomography (APT). The morphology, composition and structure of the Cu-alloy and NiAl-type precipitates were characterized using APT and transmission electron microscopy, as a function of aging time at 550 °C. In peak hardness conditions, the equiaxed bcc Cu-alloyed precipitates contain substantial amounts of Fe and are enriched in Ni, Al and Mn. Ni and Mn segregate at the Cu-alloy precipitate/ferrite matrix interface. In addition to the segregation, B2 NiAl-type precipitates nucleate at the Cu-alloy precipitates. After aging for 2 h, most Cu-alloy precipitates have a NiAl-type precipitate attached to their side. On subsequent further aging, the Cu-alloyed precipitates enrich progressively with Cu and elongate, indicating a transformation to the 9R or face centered cubic structure. The Cu-alloyed precipitates coarsen slower than the NiAl-type precipitates due to interfacial energy differences between the two types of precipitates, slower diffusion kinetics of Cu through the NiAl precipitates, different matrix equilibrium solubility and solute transfer from Cu-alloyed precipitates to NiAl-type precipitates. The relatively slow growth and coarsening of Cu-alloyed precipitates are consistent with the observation of an only modest decrease of hardness with extended aging.

Original languageEnglish (US)
Pages (from-to)56-74
Number of pages19
JournalActa Materialia
StatePublished - Jul 2014


  • Atom probe tomography
  • Copper precipitation
  • Precipitation strengthening
  • Steels
  • Transmission electron microscopy

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Polymers and Plastics
  • Metals and Alloys


Dive into the research topics of 'Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel'. Together they form a unique fingerprint.

Cite this