Ain't No Mountain High Enough: Semiparametric Modeling of LIGO-Virgo's Binary Black Hole Mass Distribution

Bruce Edelman, Zoheyr Doctor, Jaxen Godfrey, Ben Farr*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We introduce a semiparametric model for the primary mass distribution of binary black holes (BBHs) observed with gravitational waves (GWs) that applies a cubic-spline perturbation to a power law. We apply this model to the 46 BBHs included in the second gravitational-wave transient catalog (GWTC-2). The spline perturbation model recovers a consistent primary mass distribution with previous results, corroborating the existence of a peak at 35 M o˙ (>97% credibility) found with the Powerlaw+Peak model. The peak could be the result of pulsational pair-instability supernovae. The spline perturbation model finds potential signs of additional features in the primary mass distribution at lower masses similar to those previously reported by Tiwari and Fairhurst. However, with fluctuations due to small-number statistics, the simpler Powerlaw+Peak and BrokenPowerlaw models are both still perfectly consistent with observations. Our semiparametric approach serves as a way to bridge the gap between parametric and nonparametric models to more accurately measure the BBH mass distribution. With larger catalogs we will be able to use this model to resolve possible additional features that could be used to perform cosmological measurements and will build on our understanding of BBH formation, stellar evolution, and nuclear astrophysics.

Original languageEnglish (US)
Article number101
JournalAstrophysical Journal
Volume924
Issue number2
DOIs
StatePublished - Jan 10 2022

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Ain't No Mountain High Enough: Semiparametric Modeling of LIGO-Virgo's Binary Black Hole Mass Distribution'. Together they form a unique fingerprint.

Cite this