Alignment of low-dose X-ray fluorescence tomography images using differential phase contrast

Young Pyo Hong*, Sophie Charlotte Gleber, Thomas V. O'Halloran, Emily L. Que, Reiner Bleher, Stefan Vogt, Teresa K. Woodruff, Chris Jacobsen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

X-ray fluorescence nanotomography provides unprecedented sensitivity for studies of trace metal distributions in whole biological cells. Dose fractionation, in which one acquires very low dose individual projections and then obtains high statistics reconstructions as signal from a voxel is brought together (Hegerl & Hoppe, 1976), requires accurate alignment of these individual projections so as to correct for rotation stage runout. It is shown here that differential phase contrast at 10.2 keV beam energy offers the potential for accurate cross-correlation alignment of successive projections, by demonstrating that successive low dose, 3 ms per pixel, images acquired at the same specimen position and rotation angle have a narrower and smoother cross-correlation function (1.5 pixels FWHM at 300 nm pixel size) than that obtained from zinc fluorescence images (25 pixels FWHM). The differential phase contrast alignment resolution is thus well below the 700 nm × 500 nm beam spot size used in this demonstration, so that dose fractionation should be possible for reduced-dose, more rapidly acquired, fluorescence nanotomography experiments.

Original languageEnglish (US)
Pages (from-to)229-234
Number of pages6
JournalJournal of Synchrotron Radiation
Volume21
Issue number1
DOIs
StatePublished - Jan 2014

Keywords

  • X-ray fluorescence tomography
  • differential phase contrast

ASJC Scopus subject areas

  • Radiation
  • Nuclear and High Energy Physics
  • Instrumentation

Fingerprint

Dive into the research topics of 'Alignment of low-dose X-ray fluorescence tomography images using differential phase contrast'. Together they form a unique fingerprint.

Cite this