Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.

Jisen Zhang*, Xingtan Zhang, Haibao Tang, Qing Zhang, Xiuting Hua, Xiaokai Ma, Fan Zhu, Tyler Jones, Xinguang Zhu, John Bowers, Ching Man Wai, Chunfang Zheng, Yan Shi, Shuai Chen, Xiuming Xu, Jingjing Yue, David R. Nelson, Lixian Huang, Zhen Li, Huimin XuDong Zhou, Yongjun Wang, Weichang Hu, Jishan Lin, Youjin Deng, Neha Pandey, Melina Mancini, Dessireé Zerpa, Julie K. Nguyen, Liming Wang, Liang Yu, Yinghui Xin, Liangfa Ge, Jie Arro, Jennifer O. Han, Setu Chakrabarty, Marija Pushko, Wenping Zhang, Yanhong Ma, Panpan Ma, Mingju Lv, Faming Chen, Guangyong Zheng, Jingsheng Xu, Zhenhui Yang, Fang Deng, Xuequn Chen, Zhenyang Liao, Xunxiao Zhang, Zhicong Lin, Hai Lin, Hansong Yan, Zheng Kuang, Weimin Zhong, Pingping Liang, Guofeng Wang, Yuan Yuan, Jiaxian Shi, Jinxiang Hou, Jingxian Lin, Jingjing Jin, Peijian Cao, Qiaochu Shen, Qing Jiang, Ping Zhou, Yaying Ma, Xiaodan Zhang, Rongrong Xu, Juan Liu, Yongmei Zhou, Haifeng Jia, Qing Ma, Rui Qi, Zhiliang Zhang, Jingping Fang, Hongkun Fang, Jinjin Song, Mengjuan Wang, Guangrui Dong, Gang Wang, Zheng Chen, Teng Ma, Hong Liu, Singha R. Dhungana, Sarah E. Huss, Xiping Yang, Anupma Sharma, Jhon H. Trujillo, Maria C. Martinez, Matthew Hudson, John J. Riascos, Mary Schuler, Li Qing Chen, David M. Braun, Lei Li, Qingyi Yu, Jianping Wang, Kai Wang, Michael C. Schatz, David Heckerman, Marie Anne Van Sluys, Glaucia Mendes Souza, Paul H. Moore, David Sankoff, Robert VanBuren, Andrew H. Paterson, Chifumi Nagai, Ray Ming

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

506 Scopus citations

Abstract

Modern sugarcanes are polyploid interspecific hybrids, combining high sugar content from Saccharum officinarum with hardiness, disease resistance and ratooning of Saccharum spontaneum. Sequencing of a haploid S. spontaneum, AP85-441, facilitated the assembly of 32 pseudo-chromosomes comprising 8 homologous groups of 4 members each, bearing 35,525 genes with alleles defined. The reduction of basic chromosome number from 10 to 8 in S. spontaneum was caused by fissions of 2 ancestral chromosomes followed by translocations to 4 chromosomes. Surprisingly, 80% of nucleotide binding site-encoding genes associated with disease resistance are located in 4 rearranged chromosomes and 51% of those in rearranged regions. Resequencing of 64 S. spontaneum genomes identified balancing selection in rearranged regions, maintaining their diversity. Introgressed S. spontaneum chromosomes in modern sugarcanes are randomly distributed in AP85-441 genome, indicating random recombination among homologs in different S. spontaneum accessions. The allele-defined Saccharum genome offers new knowledge and resources to accelerate sugarcane improvement.

Original languageEnglish (US)
Pages (from-to)1565-1573
Number of pages9
JournalNature Genetics
Volume50
Issue number11
DOIs
StatePublished - Nov 1 2018

Funding

We thank L. McHale for reviewing and commenting on the section on disease resistance genes. This project was supported by a startup fund from Fujian Agriculture and Forestry University to R.M., the International Consortium for Sugarcane Biotechnology (project #35, R.M.), the US Department of Energy (DOE; DE-SC0010686 to R.M.), the European Bioinformatics Institute (BP2012OO2J17 to R.M.), the US National Science Foundation Plant Genome Research Program (grant IOS-1025976 to D.M.B.), the 863 program (2013AA102604 to J.Z.), the Natural Science Foundation of China (31201260 to J.Z.), the Program for New Century Excellent Talents in Fujian Province (J.Z.), and the S\u00E3o Paulo Research Foundation (FAPESP; grants 2008/52146-0, 2012/51062-3 and 2014/50921-8 to G.M.S. and 2008/52074-8 to M.-A.V.S.). This work was funded in part by the DOE Center for Advanced Bioenergy and Bioproducts Innovation (US DOE, Office of Science, Office of Biological and Environmental Research under Award Number DE-SC 18420 to M.H. and L.-Q.C.).

ASJC Scopus subject areas

  • Genetics

Fingerprint

Dive into the research topics of 'Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.'. Together they form a unique fingerprint.

Cite this