TY - JOUR
T1 - Allosteric regulation of supramolecular oligomerization and catalytic activity via coordination-based control of competitive hydrogen-bonding events
AU - McGuirk, C. Michael
AU - Mendez-Arroyo, Jose
AU - Lifschitz, Alejo M.
AU - Mirkin, Chad A.
N1 - Publisher Copyright:
© 2014 American Chemical Society.
PY - 2014/11/26
Y1 - 2014/11/26
N2 - Herein, we demonstrate that the activity of a hydrogen-bond-donating (HBD) catalyst embedded within a coordination framework can be allosterically regulated in situ by controlling oligomerization via simple changes in coordination chemistry at distal Pt(II) nodes. Using the halide-induced ligand rearrangement reaction (HILR), a heteroligated Pt(II) triple-decker complex, which contains a catalytically active diphenylene squaramide moiety and two hydrogen-bond-accepting (HBA) ester moieties, was synthesized. The HBD and HBA moieties were functionalized with hemilabile ligands of differing chelating strengths, allowing one to assemble them around Pt(II) nodes in a heteroligated fashion. Due to the hemilabile nature of the ligands, the resulting complex can be interconverted between a flexible, semiopen state and a rigid, fully closed state in situ and reversibly. FT-IR spectroscopy, 1H DOSY, and 1H NMR spectroscopy titration studies were used to demonstrate that, in the semiopen state, intermolecular hydrogen-bonding between the HBD and HBA moieties drives oligomerization of the complex and prevents substrate recognition by the catalyst. In the rigid, fully closed state, these interactions are prevented by steric and geometric constraints. Thus, the diphenylene squaramide moiety is able to catalyze a Friedel-Crafts reaction in the fully closed state, while the semiopen state shows no reactivity. This work demonstrates that controlling catalytic activity by regulating aggregation through supramolecular conformational changes, a common approach in Nature, can be applied to man-made catalytic frameworks that are relevant to materials synthesis, as well as the detection and amplification of small molecules.
AB - Herein, we demonstrate that the activity of a hydrogen-bond-donating (HBD) catalyst embedded within a coordination framework can be allosterically regulated in situ by controlling oligomerization via simple changes in coordination chemistry at distal Pt(II) nodes. Using the halide-induced ligand rearrangement reaction (HILR), a heteroligated Pt(II) triple-decker complex, which contains a catalytically active diphenylene squaramide moiety and two hydrogen-bond-accepting (HBA) ester moieties, was synthesized. The HBD and HBA moieties were functionalized with hemilabile ligands of differing chelating strengths, allowing one to assemble them around Pt(II) nodes in a heteroligated fashion. Due to the hemilabile nature of the ligands, the resulting complex can be interconverted between a flexible, semiopen state and a rigid, fully closed state in situ and reversibly. FT-IR spectroscopy, 1H DOSY, and 1H NMR spectroscopy titration studies were used to demonstrate that, in the semiopen state, intermolecular hydrogen-bonding between the HBD and HBA moieties drives oligomerization of the complex and prevents substrate recognition by the catalyst. In the rigid, fully closed state, these interactions are prevented by steric and geometric constraints. Thus, the diphenylene squaramide moiety is able to catalyze a Friedel-Crafts reaction in the fully closed state, while the semiopen state shows no reactivity. This work demonstrates that controlling catalytic activity by regulating aggregation through supramolecular conformational changes, a common approach in Nature, can be applied to man-made catalytic frameworks that are relevant to materials synthesis, as well as the detection and amplification of small molecules.
UR - http://www.scopus.com/inward/record.url?scp=84914128892&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84914128892&partnerID=8YFLogxK
U2 - 10.1021/ja508804n
DO - 10.1021/ja508804n
M3 - Article
C2 - 25389643
AN - SCOPUS:84914128892
SN - 0002-7863
VL - 136
SP - 16594
EP - 16601
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 47
ER -