TY - JOUR
T1 - Allosteric Supramolecular Coordination Constructs
AU - Lifschitz, Alejo M.
AU - Rosen, Mari S.
AU - McGuirk, C. Michael
AU - Mirkin, Chad A.
N1 - Publisher Copyright:
© 2015 American Chemical Society.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2015/6/17
Y1 - 2015/6/17
N2 - Coordination chemistry is regularly used to generate supramolecular constructs with unique environments around embedded components to affect their intrinsic properties. In certain cases, it can also be used to effect changes in supramolecular structure reminiscent of those that occur within stimuli-responsive biological structures, such as allosteric enzymes. Indeed, among a handful of general strategies for synthesizing such supramolecular systems, the weak-link approach (WLA) uniquely allows one to toggle the frameworks structural state post-assembly via simple reactions involving hemilabile ligands and transition metal centers. This synthetic strategy, when combined with dynamic ligand sorting processes, represents one of the few sets of general reactions in inorganic chemistry that allow one to synthesize spatially defined, stimuli-responsive, and multi-component frameworks in high to quantitative yields and with remarkable functional group tolerance. The WLA has thus yielded a variety of functional systems that operate similarly to allosteric enzymes, toggling activity via changes in the frameworks steric confinement or electronic state upon the recognition of small molecule inputs. In this Perspective we present the first full description of the fundamental inorganic reactions that provide the foundation for synthesizing WLA complexes. In addition, we discuss the application of regulatory strategies in biology to the design of allosteric supramolecular constructs for the regulation of various catalytic properties, electron-transfer processes, and molecular receptors, as well as for the development of sensing and signal amplification systems.
AB - Coordination chemistry is regularly used to generate supramolecular constructs with unique environments around embedded components to affect their intrinsic properties. In certain cases, it can also be used to effect changes in supramolecular structure reminiscent of those that occur within stimuli-responsive biological structures, such as allosteric enzymes. Indeed, among a handful of general strategies for synthesizing such supramolecular systems, the weak-link approach (WLA) uniquely allows one to toggle the frameworks structural state post-assembly via simple reactions involving hemilabile ligands and transition metal centers. This synthetic strategy, when combined with dynamic ligand sorting processes, represents one of the few sets of general reactions in inorganic chemistry that allow one to synthesize spatially defined, stimuli-responsive, and multi-component frameworks in high to quantitative yields and with remarkable functional group tolerance. The WLA has thus yielded a variety of functional systems that operate similarly to allosteric enzymes, toggling activity via changes in the frameworks steric confinement or electronic state upon the recognition of small molecule inputs. In this Perspective we present the first full description of the fundamental inorganic reactions that provide the foundation for synthesizing WLA complexes. In addition, we discuss the application of regulatory strategies in biology to the design of allosteric supramolecular constructs for the regulation of various catalytic properties, electron-transfer processes, and molecular receptors, as well as for the development of sensing and signal amplification systems.
UR - http://www.scopus.com/inward/record.url?scp=84934965989&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84934965989&partnerID=8YFLogxK
U2 - 10.1021/jacs.5b01054
DO - 10.1021/jacs.5b01054
M3 - Review article
C2 - 26035450
AN - SCOPUS:84934965989
SN - 0002-7863
VL - 137
SP - 7252
EP - 7261
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 23
ER -