TY - JOUR
T1 - Altered retinoid uptake and action contributes to cell survival in endometriosis
AU - Pavone, Mary Ellen
AU - Reierstad, Scott
AU - Sun, Hui
AU - Milad, Magdy
AU - Bulun, Serdar E.
AU - Cheng, You Hong
PY - 2010/11
Y1 - 2010/11
N2 - Context: Retinoic acid (RA) controls multiple biological processes via exerting opposing effects on cell survival. Retinol uptake into cells is controlled by stimulated by RA 6 (STRA6). RA is then produced from retinol in the cytosol. Partitioning of RA between the nuclear receptors RA receptor α and peroxisome-proliferator-activated receptor β/δ is regulated by cytosol-to-nuclear shuttling proteins cellular RA binding protein 2 (CRABP2) and fatty acid binding protein 5 (FABP5), which induce apoptosis or enhance survival, respectively. The roles of these mechanisms in endometrium or endometriosis remain unknown. Objective: The aim was to determine the regulation of retinoid uptake and RA action in primary stromal cells from endometrium (n = 10) or endometriosis (n = 10). Results: Progesterone receptor was necessary for high STRA6 and CRABP2 expression in endometrial stromal cells. STRA6, which was responsible for labeled retinoid uptake, was strikingly lower in endometriotic cells compared to endometrial cells. CRABP2 knockdown in endometrial cells increased survival, and FABP5 knockdown in endometriotic cells decreased survival without altering the expression of downstream nuclear retinoic acid receptor α and peroxisome-proliferator-activated receptor β/δ. Conclusions: In endometrial stromal cells, progesterone receptor up-regulates expression of STRA6 and CRABP2, which control retinol uptake and growth-suppressor actions of RA. In endometriotic stromal cells, decreased expression of these genes leads to decreased retinol uptake and dominant FABP5-mediated prosurvival activity.
AB - Context: Retinoic acid (RA) controls multiple biological processes via exerting opposing effects on cell survival. Retinol uptake into cells is controlled by stimulated by RA 6 (STRA6). RA is then produced from retinol in the cytosol. Partitioning of RA between the nuclear receptors RA receptor α and peroxisome-proliferator-activated receptor β/δ is regulated by cytosol-to-nuclear shuttling proteins cellular RA binding protein 2 (CRABP2) and fatty acid binding protein 5 (FABP5), which induce apoptosis or enhance survival, respectively. The roles of these mechanisms in endometrium or endometriosis remain unknown. Objective: The aim was to determine the regulation of retinoid uptake and RA action in primary stromal cells from endometrium (n = 10) or endometriosis (n = 10). Results: Progesterone receptor was necessary for high STRA6 and CRABP2 expression in endometrial stromal cells. STRA6, which was responsible for labeled retinoid uptake, was strikingly lower in endometriotic cells compared to endometrial cells. CRABP2 knockdown in endometrial cells increased survival, and FABP5 knockdown in endometriotic cells decreased survival without altering the expression of downstream nuclear retinoic acid receptor α and peroxisome-proliferator-activated receptor β/δ. Conclusions: In endometrial stromal cells, progesterone receptor up-regulates expression of STRA6 and CRABP2, which control retinol uptake and growth-suppressor actions of RA. In endometriotic stromal cells, decreased expression of these genes leads to decreased retinol uptake and dominant FABP5-mediated prosurvival activity.
UR - http://www.scopus.com/inward/record.url?scp=78049494012&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78049494012&partnerID=8YFLogxK
U2 - 10.1210/jc.2010-0459
DO - 10.1210/jc.2010-0459
M3 - Article
C2 - 20702525
AN - SCOPUS:78049494012
SN - 0021-972X
VL - 95
SP - E300-E309
JO - Journal of clinical endocrinology and metabolism
JF - Journal of clinical endocrinology and metabolism
IS - 11
ER -