TY - JOUR
T1 - Alternative 5′ exons of the CFTR gene show developmental regulation
AU - Mouchel, Nathalie
AU - Broackes-Carter, Fiona
AU - Harris, Ann
PY - 2003/4/1
Y1 - 2003/4/1
N2 - The cystic fibrosis transmembrane conductance regulator (CFTR) gene shows a complex mechanism of tissue-specific and temporal regulation. Expression of the sheep and human CFTR genes shows a gradual decline during lung development, from the early mid-trimester through to term. Alternative upstream exons of CFTR have been identified in several species but their functional role remains obscure. We identified a novel 5′ exon of the sheep CFTR gene (ov1a) that occurs in two splice forms (ov1aL and ov1aS), which are both mutually exclusive with exon 1. CFTR transcripts including ov1aL and ov1aS are present at low levels in many sheep tissues, however ov1aS shows temporal and spatial regulation during fetal lung development, being most abundant when CFTR expression levels start to decline. Alternative 5′ exons -1a and 1a in the human CFTR gene also show changes in expression levels through lung development. Evaluation of ov1aL and ov1aS by Mfold reveals the potential to form extremely stable secondary structures which would cause ribosomal subunit detachment. Further, the loss of exon 1 from the CFTR transcript removes motifs that are crucial for normal trafficking of the CFTR protein. Recruitment of these alternative upstream exons may represent a novel mechanism of developmental regulation of CFTR expression.
AB - The cystic fibrosis transmembrane conductance regulator (CFTR) gene shows a complex mechanism of tissue-specific and temporal regulation. Expression of the sheep and human CFTR genes shows a gradual decline during lung development, from the early mid-trimester through to term. Alternative upstream exons of CFTR have been identified in several species but their functional role remains obscure. We identified a novel 5′ exon of the sheep CFTR gene (ov1a) that occurs in two splice forms (ov1aL and ov1aS), which are both mutually exclusive with exon 1. CFTR transcripts including ov1aL and ov1aS are present at low levels in many sheep tissues, however ov1aS shows temporal and spatial regulation during fetal lung development, being most abundant when CFTR expression levels start to decline. Alternative 5′ exons -1a and 1a in the human CFTR gene also show changes in expression levels through lung development. Evaluation of ov1aL and ov1aS by Mfold reveals the potential to form extremely stable secondary structures which would cause ribosomal subunit detachment. Further, the loss of exon 1 from the CFTR transcript removes motifs that are crucial for normal trafficking of the CFTR protein. Recruitment of these alternative upstream exons may represent a novel mechanism of developmental regulation of CFTR expression.
UR - https://www.scopus.com/pages/publications/0037386815
UR - https://www.scopus.com/inward/citedby.url?scp=0037386815&partnerID=8YFLogxK
U2 - 10.1093/hmg/ddg079
DO - 10.1093/hmg/ddg079
M3 - Article
C2 - 12651871
AN - SCOPUS:0037386815
SN - 0964-6906
VL - 12
SP - 759
EP - 769
JO - Human molecular genetics
JF - Human molecular genetics
IS - 7
ER -