Abstract
Tumorigenesis is associated with elevated glucose and glutamine consumption, but how cancer cells can sense their levels to activate lipid synthesis is unknown. Here, we reveal that ammonia, released from glutamine, promotes lipogenesis via activation of sterol regulatory element-binding proteins (SREBPs), endoplasmic reticulum-bound transcription factors that play a central role in lipid metabolism. Ammonia activates the dissociation of glucose-regulated, N-glycosylated SREBP-cleavage-activating protein (SCAP) from insulin-inducible gene protein (Insig), an endoplasmic reticulum-retention protein, leading to SREBP translocation and lipogenic gene expression. Notably, 25-hydroxycholesterol blocks ammonia to access its binding site on SCAP. Mutating aspartate D428 to alanine prevents ammonia binding to SCAP, abolishes SREBP-1 activation and suppresses tumour growth. Our study characterizes the unknown role, opposite to sterols, of ammonia as a key activator that stimulates SCAP–Insig dissociation and SREBP-1 activation to promote tumour growth and demonstrates that SCAP is a critical sensor of glutamine, glucose and sterol levels to precisely control lipid synthesis.
Original language | English (US) |
---|---|
Pages (from-to) | 575-588 |
Number of pages | 14 |
Journal | Nature Metabolism |
Volume | 4 |
Issue number | 5 |
DOIs | |
State | Published - May 2022 |
Funding
This work was supported by the National Institute of Neurological Disorders and Stroke and the National Cancer Institute (USA) grants NS104332, NS112935 and R01CA240726 to D.G., CA227874 to D.G. and A.C. and an American Cancer Society Research Scholar Grant RSG-14-228-01–CSM to D.G. We also appreciate the support from the OSU Comprehensive Cancer Center–Pelotonia Idea grant and Urban & Shelly Meyer Fund for Cancer Research to D.G. The authors thank M. Torres for editorial assistance.
ASJC Scopus subject areas
- Physiology (medical)
- Internal Medicine
- Endocrinology, Diabetes and Metabolism
- Cell Biology