Amplification in the auditory periphery: The effect of coupling tuning mechanisms

K. A. Montgomery*, M. Silber, S. A. Solla

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


A mathematical model describing the coupling between two independent amplification mechanisms in auditory hair cells is proposed and analyzed. Hair cells are cells in the inner ear responsible for translating sound-induced mechanical stimuli into an electrical signal that can then be recorded by the auditory nerve. In nonmammals, two separate mechanisms have been postulated to contribute to the amplification and tuning properties of the hair cells. Models of each of these mechanisms have been shown to be poised near a Hopf bifurcation. Through a weakly nonlinear analysis that assumes weak periodic forcing, weak damping, and weak coupling, the physiologically based models of the two mechanisms are reduced to a system of two coupled amplitude equations describing the resonant response. The predictions that follow from an analysis of the reduced equations, as well as performance benefits due to the coupling of the two mechanisms, are discussed and compared with published experimental auditory nerve data.

Original languageEnglish (US)
Article number051924
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Issue number5
StatePublished - May 30 2007

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics


Dive into the research topics of 'Amplification in the auditory periphery: The effect of coupling tuning mechanisms'. Together they form a unique fingerprint.

Cite this