An Analysis of Human-Robot Information Streams to Inform Dynamic Autonomy Allocation

Christopher X. Miller, Temesgen Gebrekristos, Michael Young, Enid Montague, Brenna Argall

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A dynamic autonomy allocation framework automatically shifts how much control lies with the human versus the robotics autonomy, for example based on factors such as environmental safety or user preference. To investigate the question of which factors should drive dynamic autonomy allocation, we perform a human subject study to collect ground truth data that shifts between levels of autonomy during shared-control robot operation. Information streams from the human, the interaction between the human and the robot, and the environment are analyzed. Machine learning methods-both classical and deep learning-are trained on this data. An analysis of information streams from the human-robot team suggests features which capture the interaction between the human and the robotics autonomy are the most informative in predicting when to shift autonomy levels. Even the addition of data from the environment does little to improve upon this predictive power. The features learned by deep networks, in comparison to the hand-engineered features, prove variable in their ability to represent shift-relevant information. This work demonstrates the classification power of human-only and human-robot interaction information streams for use in the design of shared-control frameworks, and provides insights into the comparative utility of various data streams and methods to extract shift-relevant information from those data.

Original languageEnglish (US)
Title of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1872-1878
Number of pages7
ISBN (Electronic)9781665417143
DOIs
StatePublished - 2021
Event2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021 - Prague, Czech Republic
Duration: Sep 27 2021Oct 1 2021

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
Country/TerritoryCzech Republic
CityPrague
Period9/27/2110/1/21

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'An Analysis of Human-Robot Information Streams to Inform Dynamic Autonomy Allocation'. Together they form a unique fingerprint.

Cite this